Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Aliasing and oblique dual pair designs for consistent sampling

Benac, Maria JoseIcon ; Massey, Pedro GustavoIcon ; Stojanoff, DemetrioIcon
Fecha de publicación: 15/12/2015
Editorial: Elsevier Science Inc
Revista: Linear Algebra And Its Applications
ISSN: 0024-3795
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this paper we study some aspects of oblique duality between finite sequences of vectors FF and GG lying in finite dimensional subspaces WW and VV, respectively. We compute the possible eigenvalue lists of the frame operators of oblique duals to FF lying in VV. We compute the spectral and geometrical structure of minimizers of convex potentials among oblique duals for FF with norm restrictions; as an application, we show that these optimal duals are the closest to being tight frames and therefore have their spectrum as concentrated as possible, among oblique duals with norm restrictions. We obtain a complete quantitative analysis of the impact that the relative geometry between the subspaces VV and WW has in oblique duality. We apply this analysis to compute those rigid rotations U for WW such that the canonical oblique dual of U⋅FU⋅F minimize every convex potential; we also introduce a notion of aliasing for oblique dual pairs and compute those rigid rotations U for WW such that the canonical oblique dual pair associated to U⋅FU⋅F minimize the aliasing. We point out that these two last problems are intrinsic to oblique duality, within the context of consistent sampling.
Palabras clave: Marcos , Mayorización , Dualidad Oblicua , Lidskii , Frames , Oblique Duality , Majorization , Convex Potentials , Lindii'S Theorem
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 298.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/2662
URL: http://goo.gl/NSochQ
DOI: http://dx.doi.org/ 10.1016/j.laa.2015.09.007
URL: http://dx.doi/10.1016/j.laa.2015.09.007
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Benac, Maria Jose; Massey, Pedro Gustavo; Stojanoff, Demetrio; Aliasing and oblique dual pair designs for consistent sampling; Elsevier Science Inc; Linear Algebra And Its Applications; 487; 15-12-2015; 112-145
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES