Artículo
The Weyl law for contractive maps
Fecha de publicación:
11/2013
Editorial:
IOP Publishing
Revista:
Journal of Physics A: Mathematical and Theoretical
ISSN:
1751-8113
e-ISSN:
1751-8121
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We find an empirical Weyl law followed by the eigenvalues of contractive maps. An important property is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems (i.e., having a projective opening) is based on the classical phase space distributions evolved up to the quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails to describe it. Instead, we conjecture that the support for this behavior is essentially given by the strong non-orthogonality of the eigenvectors of the contractive superoperator. We test the validity of the Weyl law and this conjecture on two paradigmatic systems, the dissipative baker and kicked top maps.
Palabras clave:
Quantum Maps
,
Quantum Dissipation
,
Weyl Law
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Spina, Maria Elena; Rivas, Alejandro Mariano Fidel; Carlo, Gabriel Gustavo; The Weyl law for contractive maps; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 11-2013; 475101-475113
Compartir
Altmétricas