Mostrar el registro sencillo del ítem

dc.contributor.author
Molter, Ursula Maria  
dc.contributor.author
Rela, Ezequiel  
dc.date.available
2025-07-10T12:01:40Z  
dc.date.issued
2012-12  
dc.identifier.citation
Molter, Ursula Maria; Rela, Ezequiel; Furstenberg sets for a fractal set of directions; American Mathematical Society; Proceedings of the American Mathematical Society; 140; 8; 12-2012; 2753-2765  
dc.identifier.issn
0002-9939  
dc.identifier.uri
http://hdl.handle.net/11336/265643  
dc.description.abstract
In this note we study the behavior of the size of Furstenberg sets with respect to the size of the set of directions defining it. For any pair $alpha,etain(0,1]$, we will say that a set $Esubset R^2$ is an $F_{alphaeta}$-set if there is a subset $L$ of the unit circle of Hausdorff dimension at least $eta$ and, for each direction $e$ in $L$, there is a line segment $ell_e$ in the direction of $e$ such that the Hausdorff dimension of the set $Ecapell_e$ is equal or greater than $alpha$. The problem is considered in the wider scenario of generalized Hausdorff measures, giving estimates on the appropriate dimension functions for each class of Furstenberg sets. As a corollary of our main results, we obtain that $dim(E)gemaxleft{alpha+rac{eta}{2} ; 2alpha+eta -1 ight}$ for any $Ein F_{alphaeta}$. In particular we are able to extend previously known results to the ``endpoint´´ $alpha=0$ case.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HAUSDORFF DIMENSION  
dc.subject
FURSTENBERG SET  
dc.subject
KAKEYA SET  
dc.subject
DIMENSION FUNCTION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Furstenberg sets for a fractal set of directions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-02T09:06:29Z  
dc.journal.volume
140  
dc.journal.number
8  
dc.journal.pagination
2753-2765  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Providence  
dc.description.fil
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Proceedings of the American Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/0000-000-00/S0002-9939-2011-11111-0/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/S0002-9939-2011-11111-0