Mostrar el registro sencillo del ítem

dc.contributor.author
Bavassi, Mariana Luz  
dc.contributor.author
Fuentemilla, Lluís  
dc.date.available
2025-07-10T11:59:19Z  
dc.date.issued
2024-09  
dc.identifier.citation
Bavassi, Mariana Luz; Fuentemilla, Lluís; Segregation-to-integration transformation model of memory evolution; MIT Press; Network Neuroscience; 8; 4; 9-2024; 1529-1544  
dc.identifier.uri
http://hdl.handle.net/11336/265639  
dc.description.abstract
Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) Model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time. SIT model asserts that memories initially adopt a highly modular or segregated network structure, functioning as an optimal storage buffer by balancing protection from disruptions and accommodating substantial information.Over time, a repeated combination of neural network reactivations involving activation spreading and synaptic plasticity transforms the initial modular structure into an integrated memory form, facilitating intercommunity spreading and fostering generalization. The SIT Model identifies a non-linear or inverted U-shaped function in memory evolution where memories are most susceptible to changing their representation. This time window, located early during the transformation, is a consequence of memory’s structural configuration, where the activation diffusion across the network is maximized.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MIT Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
NEURAL NETWORK  
dc.subject
MODULARITY  
dc.subject
CONSOLIDATION  
dc.subject
REACTIVATION  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Segregation-to-integration transformation model of memory evolution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-30T14:03:17Z  
dc.identifier.eissn
2472-1751  
dc.journal.volume
8  
dc.journal.number
4  
dc.journal.pagination
1529-1544  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bavassi, Mariana Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina  
dc.description.fil
Fil: Fuentemilla, Lluís. Universidad de Barcelona. Facultad de Psicologia; España  
dc.journal.title
Network Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/8/4/1529/124254/Segregation-to-integration-transformation-model-of  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1162/netn_a_00415