Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Segregation-to-integration transformation model of memory evolution

Bavassi, Mariana LuzIcon ; Fuentemilla, Lluís
Fecha de publicación: 09/2024
Editorial: MIT Press
Revista: Network Neuroscience
e-ISSN: 2472-1751
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) Model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time. SIT model asserts that memories initially adopt a highly modular or segregated network structure, functioning as an optimal storage buffer by balancing protection from disruptions and accommodating substantial information.Over time, a repeated combination of neural network reactivations involving activation spreading and synaptic plasticity transforms the initial modular structure into an integrated memory form, facilitating intercommunity spreading and fostering generalization. The SIT Model identifies a non-linear or inverted U-shaped function in memory evolution where memories are most susceptible to changing their representation. This time window, located early during the transformation, is a consequence of memory’s structural configuration, where the activation diffusion across the network is maximized.
Palabras clave: NEURAL NETWORK , MODULARITY , CONSOLIDATION , REACTIVATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.003Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265639
URL: https://direct.mit.edu/netn/article/8/4/1529/124254/Segregation-to-integration-t
DOI: http://dx.doi.org/10.1162/netn_a_00415
Colecciones
Articulos(IFIBYNE)
Articulos de INST.DE FISIOL., BIOL.MOLECULAR Y NEUROCIENCIAS
Citación
Bavassi, Mariana Luz; Fuentemilla, Lluís; Segregation-to-integration transformation model of memory evolution; MIT Press; Network Neuroscience; 8; 4; 9-2024; 1529-1544
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES