Artículo
Segregation-to-integration transformation model of memory evolution
Fecha de publicación:
09/2024
Editorial:
MIT Press
Revista:
Network Neuroscience
e-ISSN:
2472-1751
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) Model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time. SIT model asserts that memories initially adopt a highly modular or segregated network structure, functioning as an optimal storage buffer by balancing protection from disruptions and accommodating substantial information.Over time, a repeated combination of neural network reactivations involving activation spreading and synaptic plasticity transforms the initial modular structure into an integrated memory form, facilitating intercommunity spreading and fostering generalization. The SIT Model identifies a non-linear or inverted U-shaped function in memory evolution where memories are most susceptible to changing their representation. This time window, located early during the transformation, is a consequence of memory’s structural configuration, where the activation diffusion across the network is maximized.
Palabras clave:
NEURAL NETWORK
,
MODULARITY
,
CONSOLIDATION
,
REACTIVATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBYNE)
Articulos de INST.DE FISIOL., BIOL.MOLECULAR Y NEUROCIENCIAS
Articulos de INST.DE FISIOL., BIOL.MOLECULAR Y NEUROCIENCIAS
Citación
Bavassi, Mariana Luz; Fuentemilla, Lluís; Segregation-to-integration transformation model of memory evolution; MIT Press; Network Neuroscience; 8; 4; 9-2024; 1529-1544
Compartir
Altmétricas