Mostrar el registro sencillo del ítem

dc.contributor.author
Orsi, Ximena  
dc.contributor.author
Hierro, Rodrigo Federico  
dc.contributor.author
Llamedo, Pablo  
dc.contributor.author
Alexander, Pedro Manfredo  
dc.contributor.author
de la Torre, Alejandro  
dc.date.available
2025-07-10T09:16:33Z  
dc.date.issued
2025-06  
dc.identifier.citation
Orsi, Ximena; Hierro, Rodrigo Federico; Llamedo, Pablo; Alexander, Pedro Manfredo; de la Torre, Alejandro; Forecasting Intense Radar Reflectivity Using Machine Learning and Deep Learning Algorithms; John Wiley & Sons Ltd; International Journal of Climatology; 6-2025; 1-17  
dc.identifier.issn
0899-8418  
dc.identifier.uri
http://hdl.handle.net/11336/265561  
dc.description.abstract
Over the past 50 years, numerous studies have been conducted in the Cuyo region of Argentina, South America, investigating the relationship between meteorological variables and hail precipitation. These studies have led to the development of various models aimed at classifying hydrometeors, determining their precipitation, size, and the resulting surface damage. Based on 16 years of observations using a three-radar network in the Cuyo region, this paper presents preliminary results from a hail prediction study employing machine learning and deep learning techniques applied to radar data. Algorithms random forest (RF), gradient boosting (GB) and logistic regression (LR) in addition to a recurrent neural network, were used to predict hail occurrence based on radar data. Storm cells were classified as hail or no-hail when their reflectivity reached or exceeded 55 dBZ during their evolution. Reflectivity was found to be the most suitable variable among over 50 radar variables for studying hail occurrence. Results showed that considering the temporal evolution of radar observations, by including data at different time steps (from Results showed that considering the temporal evolution of radar observations, by including data at different time steps (from t = 1 to t = 5), significantly improved the algorithms ability to predict hail occurrence). This can be attributed to both a reduction in forecast lead time and the relevance of the temporal evolution of the variables. The inclusion of global model data, such as reanalysis from ECMWF (ERA5) did not demonstrate any significant improvement in our predictions. Models such as recurrent neural networks (RNN) have the potential to deliver enhanced performance since they explicitly account for temporal dynamics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HAIL FORECASTING  
dc.subject
CUYO HAIL  
dc.subject
MACHINE LEARNING  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Forecasting Intense Radar Reflectivity Using Machine Learning and Deep Learning Algorithms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-07T12:31:40Z  
dc.journal.pagination
1-17  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Orsi, Ximena. Universidad Austral. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Hierro, Rodrigo Federico. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Llamedo, Pablo. Departamento de Ciencias Aplicadas ; Universidad Nacional del Alto Uruguay;  
dc.description.fil
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: de la Torre, Alejandro. Universidad Austral. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
International Journal of Climatology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.8919  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/joc.8919