Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Forecasting Intense Radar Reflectivity Using Machine Learning and Deep Learning Algorithms

Orsi, Ximena; Hierro, Rodrigo FedericoIcon ; Llamedo, Pablo; Alexander, Pedro ManfredoIcon ; de la Torre, AlejandroIcon
Fecha de publicación: 06/2025
Editorial: John Wiley & Sons Ltd
Revista: International Journal of Climatology
ISSN: 0899-8418
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Over the past 50 years, numerous studies have been conducted in the Cuyo region of Argentina, South America, investigating the relationship between meteorological variables and hail precipitation. These studies have led to the development of various models aimed at classifying hydrometeors, determining their precipitation, size, and the resulting surface damage. Based on 16 years of observations using a three-radar network in the Cuyo region, this paper presents preliminary results from a hail prediction study employing machine learning and deep learning techniques applied to radar data. Algorithms random forest (RF), gradient boosting (GB) and logistic regression (LR) in addition to a recurrent neural network, were used to predict hail occurrence based on radar data. Storm cells were classified as hail or no-hail when their reflectivity reached or exceeded 55 dBZ during their evolution. Reflectivity was found to be the most suitable variable among over 50 radar variables for studying hail occurrence. Results showed that considering the temporal evolution of radar observations, by including data at different time steps (from Results showed that considering the temporal evolution of radar observations, by including data at different time steps (from t = 1 to t = 5), significantly improved the algorithms ability to predict hail occurrence). This can be attributed to both a reduction in forecast lead time and the relevance of the temporal evolution of the variables. The inclusion of global model data, such as reanalysis from ECMWF (ERA5) did not demonstrate any significant improvement in our predictions. Models such as recurrent neural networks (RNN) have the potential to deliver enhanced performance since they explicitly account for temporal dynamics.
Palabras clave: HAIL FORECASTING , CUYO HAIL , MACHINE LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 2.466Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265561
URL: https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.8919
DOI: http://dx.doi.org/10.1002/joc.8919
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Orsi, Ximena; Hierro, Rodrigo Federico; Llamedo, Pablo; Alexander, Pedro Manfredo; de la Torre, Alejandro; Forecasting Intense Radar Reflectivity Using Machine Learning and Deep Learning Algorithms; John Wiley & Sons Ltd; International Journal of Climatology; 6-2025; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES