Mostrar el registro sencillo del ítem
dc.contributor.author
Bengoa Luoni, Sofia Ailin

dc.contributor.author
Ricci, Riccardo
dc.contributor.author
Corzo, Melanie Anahi

dc.contributor.author
Hoxha, Genc
dc.contributor.author
Melgani, Farid
dc.contributor.author
Fernández, Paula del Carmen

dc.date.available
2025-07-07T11:57:12Z
dc.date.issued
2024-07
dc.identifier.citation
Bengoa Luoni, Sofia Ailin; Ricci, Riccardo; Corzo, Melanie Anahi; Hoxha, Genc; Melgani, Farid; et al.; Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images; MDPI; Plants; 13; 14; 7-2024; 1-15
dc.identifier.issn
2223-7747
dc.identifier.uri
http://hdl.handle.net/11336/265392
dc.description.abstract
Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
PHENOLOGY
dc.subject
SENESCENCE
dc.subject
DEEP MACHINE LEARNING
dc.subject
SUNFLOWER
dc.subject.classification
Biotecnología Agrícola y Biotecnología Alimentaria

dc.subject.classification
Biotecnología Agropecuaria

dc.subject.classification
CIENCIAS AGRÍCOLAS

dc.title
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-03T14:17:51Z
dc.journal.volume
13
dc.journal.number
14
dc.journal.pagination
1-15
dc.journal.pais
Suiza

dc.description.fil
Fil: Bengoa Luoni, Sofia Ailin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Ricci, Riccardo. Universita degli Studi di Trento; Italia
dc.description.fil
Fil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina
dc.description.fil
Fil: Hoxha, Genc. Freie Universität Berlin; Alemania
dc.description.fil
Fil: Melgani, Farid. Universita degli Studi di Trento; Italia
dc.description.fil
Fil: Fernández, Paula del Carmen. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina
dc.journal.title
Plants
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/14/1998
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/plants13141998
Archivos asociados