Mostrar el registro sencillo del ítem

dc.contributor.author
Bengoa Luoni, Sofia Ailin  
dc.contributor.author
Ricci, Riccardo  
dc.contributor.author
Corzo, Melanie Anahi  
dc.contributor.author
Hoxha, Genc  
dc.contributor.author
Melgani, Farid  
dc.contributor.author
Fernández, Paula del Carmen  
dc.date.available
2025-07-07T11:57:12Z  
dc.date.issued
2024-07  
dc.identifier.citation
Bengoa Luoni, Sofia Ailin; Ricci, Riccardo; Corzo, Melanie Anahi; Hoxha, Genc; Melgani, Farid; et al.; Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images; MDPI; Plants; 13; 14; 7-2024; 1-15  
dc.identifier.issn
2223-7747  
dc.identifier.uri
http://hdl.handle.net/11336/265392  
dc.description.abstract
Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
PHENOLOGY  
dc.subject
SENESCENCE  
dc.subject
DEEP MACHINE LEARNING  
dc.subject
SUNFLOWER  
dc.subject.classification
Biotecnología Agrícola y Biotecnología Alimentaria  
dc.subject.classification
Biotecnología Agropecuaria  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-03T14:17:51Z  
dc.journal.volume
13  
dc.journal.number
14  
dc.journal.pagination
1-15  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Bengoa Luoni, Sofia Ailin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ricci, Riccardo. Universita degli Studi di Trento; Italia  
dc.description.fil
Fil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina  
dc.description.fil
Fil: Hoxha, Genc. Freie Universität Berlin; Alemania  
dc.description.fil
Fil: Melgani, Farid. Universita degli Studi di Trento; Italia  
dc.description.fil
Fil: Fernández, Paula del Carmen. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina  
dc.journal.title
Plants  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/14/1998  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/plants13141998