Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images

Bengoa Luoni, Sofia AilinIcon ; Ricci, Riccardo; Corzo, Melanie AnahiIcon ; Hoxha, Genc; Melgani, Farid; Fernández, Paula del CarmenIcon
Fecha de publicación: 07/2024
Editorial: MDPI
Revista: Plants
ISSN: 2223-7747
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biotecnología Agrícola y Biotecnología Alimentaria

Resumen

Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase.
Palabras clave: PHENOLOGY , SENESCENCE , DEEP MACHINE LEARNING , SUNFLOWER
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.057Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265392
URL: https://www.mdpi.com/2223-7747/13/14/1998
DOI: http://dx.doi.org/10.3390/plants13141998
Colecciones
Articulos (IABIMO)
Articulos de INSTITUTO DE AGROBIOTECNOLOGIA Y BIOLOGIA MOLECULAR
Citación
Bengoa Luoni, Sofia Ailin; Ricci, Riccardo; Corzo, Melanie Anahi; Hoxha, Genc; Melgani, Farid; et al.; Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images; MDPI; Plants; 13; 14; 7-2024; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES