Mostrar el registro sencillo del ítem
dc.contributor.author
Ilten, Nathan
dc.contributor.author
Nájera Chávez, Alfredo
dc.contributor.author
Treffinger Cienfuegos, Hipolito José

dc.date.available
2025-07-07T10:34:16Z
dc.date.issued
2025-02
dc.identifier.citation
Ilten, Nathan; Nájera Chávez, Alfredo; Treffinger Cienfuegos, Hipolito José; Deformation theory for finite cluster complexes; Springer; Mathematische Zeitschrift; 309; 4; 2-2025; 1-54
dc.identifier.issn
0025-5874
dc.identifier.uri
http://hdl.handle.net/11336/265363
dc.description.abstract
We study the deformation theory of the Stanley–Reisner rings associated to cluster complexes for skew-symmetrizable cluster algebras of geometric and finite cluster type. In particular, we show that in the skew-symmetric case, these cluster complexes are unobstructed, generalizing a result of Ilten and Christophersen in the A_n case. We also study the connection between cluster algebras with universal coefficients and cluster complexes. We show that for a full rank positively graded cluster algebra A of geometric and finite cluster type, the cluster algebra with universal coefficients may be recovered as the universal family over a partial closure of a torus orbit in a multigraded Hilbert scheme. Likewise, we show that under suitable hypotheses, the cluster algebra may be recovered as the coordinate ring for a certain torus-invariant semiuniversal deformation of the Stanley–Reisner ring of the cluster complex. We apply these results to show that for any cluster algebra A of geometric and finite cluster type, A is Gorenstein, and A is unobstructed if it is skew-symmetric. Moreover, if A has enough frozen variables then it has no non-trivial torus-invariant deformations. We also study the Gröbner theory of the ideal of relations among cluster and frozen variables of A. As a byproduct we generalize previous results in this setting obtained by Bossinger, Mohammadi and Nájera Chávez for Grassmannians of planes and Gr(3,6).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Stanley-Reisner ring
dc.subject
Cluster algebras
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Deformation theory for finite cluster complexes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-02T09:08:23Z
dc.journal.volume
309
dc.journal.number
4
dc.journal.pagination
1-54
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Ilten, Nathan. University Fraser Simon; Canadá
dc.description.fil
Fil: Nájera Chávez, Alfredo. Universidad Nacional Autónoma de México; México
dc.description.fil
Fil: Treffinger Cienfuegos, Hipolito José. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Mathematische Zeitschrift

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00209-025-03691-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00209-025-03691-0
Archivos asociados