Artículo
Deformation theory for finite cluster complexes
Fecha de publicación:
02/2025
Editorial:
Springer
Revista:
Mathematische Zeitschrift
ISSN:
0025-5874
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the deformation theory of the Stanley–Reisner rings associated to cluster complexes for skew-symmetrizable cluster algebras of geometric and finite cluster type. In particular, we show that in the skew-symmetric case, these cluster complexes are unobstructed, generalizing a result of Ilten and Christophersen in the A_n case. We also study the connection between cluster algebras with universal coefficients and cluster complexes. We show that for a full rank positively graded cluster algebra A of geometric and finite cluster type, the cluster algebra with universal coefficients may be recovered as the universal family over a partial closure of a torus orbit in a multigraded Hilbert scheme. Likewise, we show that under suitable hypotheses, the cluster algebra may be recovered as the coordinate ring for a certain torus-invariant semiuniversal deformation of the Stanley–Reisner ring of the cluster complex. We apply these results to show that for any cluster algebra A of geometric and finite cluster type, A is Gorenstein, and A is unobstructed if it is skew-symmetric. Moreover, if A has enough frozen variables then it has no non-trivial torus-invariant deformations. We also study the Gröbner theory of the ideal of relations among cluster and frozen variables of A. As a byproduct we generalize previous results in this setting obtained by Bossinger, Mohammadi and Nájera Chávez for Grassmannians of planes and Gr(3,6).
Palabras clave:
Stanley-Reisner ring
,
Cluster algebras
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ilten, Nathan; Nájera Chávez, Alfredo; Treffinger Cienfuegos, Hipolito José; Deformation theory for finite cluster complexes; Springer; Mathematische Zeitschrift; 309; 4; 2-2025; 1-54
Compartir
Altmétricas