Mostrar el registro sencillo del ítem

dc.contributor.author
Sevlever, Federico  
dc.date.available
2025-07-03T12:04:43Z  
dc.date.issued
2024-03  
dc.identifier.citation
Sevlever, Federico; Defining Network Topologies that Can Achieve Molecular Memory; Cold Spring Harbor Laboratory Press; bioRxiv; 3-2024; 1-20  
dc.identifier.issn
2692-8205  
dc.identifier.uri
http://hdl.handle.net/11336/265135  
dc.description.abstract
In the context of cellular signaling and gene regulatory networks, the concept of molecular memory emerges as a crucial determinant of molecular mechanisms. This study introduces a novel memory quantifier designed to comprehensively capture and quantify the memory of a system in response to transient stimuli. We proposed and validate this quantifier through toy models, showcasing its effectiveness in systems with positive feedback loops and bistability. In addition, we develop an algorithm to assess long-term memory in circuits, leading to the identification of minimal motifs that play pivotal roles in conferring memory. The research explores the comparative impact of positive and negative feedback loops on memory, revealing that positive feedback enhances memory while certain negative feedbacks may diminish it. An intriguing finding emerges as oscillating circuits, even in the absence of positive feedback, exhibit memory, with the phase of oscillations storing information about stimulus duration. Finally, we experimentally validate the quantifier using mouse Embryonic Stem Cells (mESCs) subjected to transient differentiation stimuli. The proposed memory quantifier is applied to gene expression dynamics, revealing varying degrees of memory retention among different genes. The vectorial nature of the quantifier proves advantageous in capturing the holistic memory dynamics of the system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cold Spring Harbor Laboratory Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
MOLECULAR MEMORY  
dc.subject
NETWORK MOTIFS  
dc.subject
GENE REGULATORY NETWORKS  
dc.subject
STEM CELLS  
dc.subject.classification
Biología del Desarrollo  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Defining Network Topologies that Can Achieve Molecular Memory  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-02T14:41:07Z  
dc.journal.pagination
1-20  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sevlever, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Laboratorio de Investigaciones en Neurociencias Aplicadas; Argentina  
dc.journal.title
bioRxiv  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1101/2024.03.13.584853  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.biorxiv.org/content/10.1101/2024.03.13.584853v1