Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Defining Network Topologies that Can Achieve Molecular Memory

Sevlever, FedericoIcon
Fecha de publicación: 03/2024
Editorial: Cold Spring Harbor Laboratory Press
Revista: bioRxiv
ISSN: 2692-8205
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biología del Desarrollo

Resumen

In the context of cellular signaling and gene regulatory networks, the concept of molecular memory emerges as a crucial determinant of molecular mechanisms. This study introduces a novel memory quantifier designed to comprehensively capture and quantify the memory of a system in response to transient stimuli. We proposed and validate this quantifier through toy models, showcasing its effectiveness in systems with positive feedback loops and bistability. In addition, we develop an algorithm to assess long-term memory in circuits, leading to the identification of minimal motifs that play pivotal roles in conferring memory. The research explores the comparative impact of positive and negative feedback loops on memory, revealing that positive feedback enhances memory while certain negative feedbacks may diminish it. An intriguing finding emerges as oscillating circuits, even in the absence of positive feedback, exhibit memory, with the phase of oscillations storing information about stimulus duration. Finally, we experimentally validate the quantifier using mouse Embryonic Stem Cells (mESCs) subjected to transient differentiation stimuli. The proposed memory quantifier is applied to gene expression dynamics, revealing varying degrees of memory retention among different genes. The vectorial nature of the quantifier proves advantageous in capturing the holistic memory dynamics of the system.
Palabras clave: MOLECULAR MEMORY , NETWORK MOTIFS , GENE REGULATORY NETWORKS , STEM CELLS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.862Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265135
DOI: https://doi.org/10.1101/2024.03.13.584853
URL: https://www.biorxiv.org/content/10.1101/2024.03.13.584853v1
Colecciones
Articulos (INEU)
Articulos de INSTITUTO DE NEUROCIENCIAS
Citación
Sevlever, Federico; Defining Network Topologies that Can Achieve Molecular Memory; Cold Spring Harbor Laboratory Press; bioRxiv; 3-2024; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES