Artículo
Understanding the interlayer coupling in 1 T / 1 H − NbSe 2 heterobilayers
Pico, Roman Eugenio
; Abufager, Paula Natalia
; Hamad, Ignacio Javier
; Robles, Roberto; Lorente, Nicolas



Fecha de publicación:
08/2024
Editorial:
American Physical Society
Revista:
Physical Review B: Condensed Matter and Materials Physics
ISSN:
1098-0121
e-ISSN:
2469-9969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The properties of 2D materials are strongly influenced by their substrate, leading to a variety of proximity effects like screening, charge transfer, and hybridization. Surprisingly, there is a dearth of theoretical studies on these effects. Particularly, previous theoretical research on the star of David (SOD) structure in 1−NbSe2 has focused on single-layer configurations or stacking with the same 1 phase without any real substrate. Here, we depart from these approaches and explore how these proximity effects shape the electronic and magnetic properties of the 1−NbSe2 phase when it is grown on the metallic 1−NbSe2 substrate. Using density functional calculations, we establish a common framework to define the key characteristics of both free-standing 1−NbSe2 and 1−NbSe2. We then identify the optimal stacking arrangement for these two layers, revealing a transfer from the 1 to the 1 phase and a reorganization of charge within each layer. Our findings indicate that the magnetic moment of the SOD structure is still robust; however, it is diminished due to a reduction in the on-site Coulomb interaction of the Hubbard bands. Additionally, the interlayer coupling induces metallicity in the 1 phase and increases the decoupling of the lower Hubbard band from the valence band.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Pico, Roman Eugenio; Abufager, Paula Natalia; Hamad, Ignacio Javier; Robles, Roberto; Lorente, Nicolas; Understanding the interlayer coupling in 1 T / 1 H − NbSe 2 heterobilayers; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 110; 7; 8-2024; 1-10
Compartir
Altmétricas