Mostrar el registro sencillo del ítem
dc.contributor.author
Martinez Von Ellrichshausen, Andres Santiago
dc.contributor.author
Dreidemie, Carola
dc.contributor.author
Inchaurza, Fernan
dc.contributor.author
Cucurull, Agustin
dc.contributor.author
Basti, Marian
dc.contributor.author
Masciocchi, Maité
dc.date.available
2025-07-03T11:13:42Z
dc.date.issued
2024-07
dc.identifier.citation
Martinez Von Ellrichshausen, Andres Santiago; Dreidemie, Carola; Inchaurza, Fernan; Cucurull, Agustin; Basti, Marian; et al.; Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning; Wiley Blackwell Publishing, Inc; Agricultural And Forest Entomology; 27; 1; 7-2024; 111-123
dc.identifier.issn
1461-9555
dc.identifier.uri
http://hdl.handle.net/11336/265102
dc.description.abstract
1. We describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony.2. The hardware consists of an illuminated channel and a fixed camera to capture the wasps’ activities. An ad hoc post-processing software was developed to identify the direction of movement and caste of the recorded individuals.3. Validation results indicate that the model can detect with high levels of accuracy the presence of workers, drones and gynes, whereas direction of movement is accurate only for workers and drones, but not for gynes. Further development of the software and hardware should enable higher levels of accuracy, especially in terms of the direction of movement of reproductive individuals.4. This innovative tool holds immense potential for advancing ecological and beha-vioural research by providing researchers with rapid and easily accessible data.5. Understanding the activity patterns of individual wasps within the colony can yield valuable insights into factors influencing their growth, foraging patterns and the behaviour of reproductive individuals. Ultimately, this information can be incorporated into effective management plans for controlling harmful social insect populations in both ecological and productive systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTOMATIC CASTE RECOGNITION
dc.subject
AUTOMATION
dc.subject
BIG DATA
dc.subject
MACHINE LEARNING
dc.subject
NEURAL NETWORK
dc.subject
PEST
dc.subject
SOCIAL INSECTS
dc.subject.classification
Ecología
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-02T14:39:39Z
dc.journal.volume
27
dc.journal.number
1
dc.journal.pagination
111-123
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Martinez Von Ellrichshausen, Andres Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Dreidemie, Carola. Universidad Nacional de Río Negro; Argentina
dc.description.fil
Fil: Inchaurza, Fernan. Universidad Nacional de Río Negro; Argentina
dc.description.fil
Fil: Cucurull, Agustin. Universidad Nacional de Río Negro; Argentina
dc.description.fil
Fil: Basti, Marian. Universidad Nacional de Río Negro; Argentina
dc.description.fil
Fil: Masciocchi, Maité. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.journal.title
Agricultural And Forest Entomology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/afe.12638
Archivos asociados