Mostrar el registro sencillo del ítem

dc.contributor.author
Martinez Von Ellrichshausen, Andres Santiago  
dc.contributor.author
Dreidemie, Carola  
dc.contributor.author
Inchaurza, Fernan  
dc.contributor.author
Cucurull, Agustin  
dc.contributor.author
Basti, Marian  
dc.contributor.author
Masciocchi, Maité  
dc.date.available
2025-07-03T11:13:42Z  
dc.date.issued
2024-07  
dc.identifier.citation
Martinez Von Ellrichshausen, Andres Santiago; Dreidemie, Carola; Inchaurza, Fernan; Cucurull, Agustin; Basti, Marian; et al.; Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning; Wiley Blackwell Publishing, Inc; Agricultural And Forest Entomology; 27; 1; 7-2024; 111-123  
dc.identifier.issn
1461-9555  
dc.identifier.uri
http://hdl.handle.net/11336/265102  
dc.description.abstract
1. We describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony.2. The hardware consists of an illuminated channel and a fixed camera to capture the wasps’ activities. An ad hoc post-processing software was developed to identify the direction of movement and caste of the recorded individuals.3. Validation results indicate that the model can detect with high levels of accuracy the presence of workers, drones and gynes, whereas direction of movement is accurate only for workers and drones, but not for gynes. Further development of the software and hardware should enable higher levels of accuracy, especially in terms of the direction of movement of reproductive individuals.4. This innovative tool holds immense potential for advancing ecological and beha-vioural research by providing researchers with rapid and easily accessible data.5. Understanding the activity patterns of individual wasps within the colony can yield valuable insights into factors influencing their growth, foraging patterns and the behaviour of reproductive individuals. Ultimately, this information can be incorporated into effective management plans for controlling harmful social insect populations in both ecological and productive systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTOMATIC CASTE RECOGNITION  
dc.subject
AUTOMATION  
dc.subject
BIG DATA  
dc.subject
MACHINE LEARNING  
dc.subject
NEURAL NETWORK  
dc.subject
PEST  
dc.subject
SOCIAL INSECTS  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-02T14:39:39Z  
dc.journal.volume
27  
dc.journal.number
1  
dc.journal.pagination
111-123  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Martinez Von Ellrichshausen, Andres Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Dreidemie, Carola. Universidad Nacional de Río Negro; Argentina  
dc.description.fil
Fil: Inchaurza, Fernan. Universidad Nacional de Río Negro; Argentina  
dc.description.fil
Fil: Cucurull, Agustin. Universidad Nacional de Río Negro; Argentina  
dc.description.fil
Fil: Basti, Marian. Universidad Nacional de Río Negro; Argentina  
dc.description.fil
Fil: Masciocchi, Maité. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.journal.title
Agricultural And Forest Entomology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/afe.12638