Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning

Martinez Von Ellrichshausen, Andres SantiagoIcon ; Dreidemie, Carola; Inchaurza, Fernan; Cucurull, Agustin; Basti, Marian; Masciocchi, MaitéIcon
Fecha de publicación: 07/2024
Editorial: Wiley Blackwell Publishing, Inc
Revista: Agricultural And Forest Entomology
ISSN: 1461-9555
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología; Ciencias de la Información y Bioinformática

Resumen

1. We describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony.2. The hardware consists of an illuminated channel and a fixed camera to capture the wasps’ activities. An ad hoc post-processing software was developed to identify the direction of movement and caste of the recorded individuals.3. Validation results indicate that the model can detect with high levels of accuracy the presence of workers, drones and gynes, whereas direction of movement is accurate only for workers and drones, but not for gynes. Further development of the software and hardware should enable higher levels of accuracy, especially in terms of the direction of movement of reproductive individuals.4. This innovative tool holds immense potential for advancing ecological and beha-vioural research by providing researchers with rapid and easily accessible data.5. Understanding the activity patterns of individual wasps within the colony can yield valuable insights into factors influencing their growth, foraging patterns and the behaviour of reproductive individuals. Ultimately, this information can be incorporated into effective management plans for controlling harmful social insect populations in both ecological and productive systems.
Palabras clave: AUTOMATIC CASTE RECOGNITION , AUTOMATION , BIG DATA , MACHINE LEARNING , NEURAL NETWORK , PEST , SOCIAL INSECTS
Ver el registro completo
 
Archivos asociados
Tamaño: 3.215Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265102
URL: https://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638
DOI: http://dx.doi.org/10.1111/afe.12638
Colecciones
Articulos (IFAB)
Articulos de INSTITUTO DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS BARILOCHE
Citación
Martinez Von Ellrichshausen, Andres Santiago; Dreidemie, Carola; Inchaurza, Fernan; Cucurull, Agustin; Basti, Marian; et al.; Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning; Wiley Blackwell Publishing, Inc; Agricultural And Forest Entomology; 27; 1; 7-2024; 111-123
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES