Mostrar el registro sencillo del ítem
dc.contributor.author
Lützow Holm, Eric
dc.contributor.author
Fernández Slezak, Diego
dc.contributor.author
Tagliazucchi, Enzo Rodolfo
dc.date.available
2025-07-03T09:44:13Z
dc.date.issued
2024-06
dc.identifier.citation
Lützow Holm, Eric; Fernández Slezak, Diego; Tagliazucchi, Enzo Rodolfo; Contribution of low-level image statistics to EEG decoding of semantic content in multivariate and univariate models with feature optimization; Elsevier; Journal Neuroimag; 293; 6-2024; 1-13
dc.identifier.issn
1053-8119
dc.identifier.uri
http://hdl.handle.net/11336/265079
dc.description.abstract
Spatio-temporal patterns of evoked brain activity contain information that can be used to decode and categorize the semantic content of visual stimuli. However, this procedure can be biased by low-level image features independently of the semantic content present in the stimuli, prompting the need to understand the robustness of different models regarding these confounding factors. In this study, we trained machine learning models to distinguish between concepts included in the publicly available THINGS-EEG dataset using electroencephalography (EEG) data acquired during a rapid serial visual presentation paradigm. We investigated the contribution of low-level image features to decoding accuracy in a multivariate model, utilizing broadband data from all EEG channels. Additionally, we explored a univariate model obtained through data-driven feature selection applied to the spatial and frequency domains. While the univariate models exhibited better decoding accuracy, their predictions were less robust to the confounding effect of low-level image statistics. Notably, some of the models maintained their accuracy even after random replacement of the training dataset with semantically unrelated samples that presented similar low-level content. In conclusion, our findings suggest that model optimization impacts sensitivity to confounding factors, regardless of the resulting classification performance. Therefore, the choice of EEG features for semantic decoding should ideally be informed by criteria beyond classifier performance, such as the neurobiological mechanisms under study.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
NEUROCIENCIA
dc.subject
NEURIMAGENES
dc.subject
DECODING
dc.subject
NACHINE LEARNING
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Contribution of low-level image statistics to EEG decoding of semantic content in multivariate and univariate models with feature optimization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-02T14:40:19Z
dc.journal.volume
293
dc.journal.pagination
1-13
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Lützow Holm, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Fernández Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.journal.title
Journal Neuroimag
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811924001216
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.neuroimage.2024.120626
Archivos asociados