Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Contribution of low-level image statistics to EEG decoding of semantic content in multivariate and univariate models with feature optimization

Lützow Holm, EricIcon ; Fernández Slezak, Diego; Tagliazucchi, Enzo RodolfoIcon
Fecha de publicación: 06/2024
Editorial: Elsevier
Revista: Journal Neuroimag
ISSN: 1053-8119
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Spatio-temporal patterns of evoked brain activity contain information that can be used to decode and categorize the semantic content of visual stimuli. However, this procedure can be biased by low-level image features independently of the semantic content present in the stimuli, prompting the need to understand the robustness of different models regarding these confounding factors. In this study, we trained machine learning models to distinguish between concepts included in the publicly available THINGS-EEG dataset using electroencephalography (EEG) data acquired during a rapid serial visual presentation paradigm. We investigated the contribution of low-level image features to decoding accuracy in a multivariate model, utilizing broadband data from all EEG channels. Additionally, we explored a univariate model obtained through data-driven feature selection applied to the spatial and frequency domains. While the univariate models exhibited better decoding accuracy, their predictions were less robust to the confounding effect of low-level image statistics. Notably, some of the models maintained their accuracy even after random replacement of the training dataset with semantically unrelated samples that presented similar low-level content. In conclusion, our findings suggest that model optimization impacts sensitivity to confounding factors, regardless of the resulting classification performance. Therefore, the choice of EEG features for semantic decoding should ideally be informed by criteria beyond classifier performance, such as the neurobiological mechanisms under study.
Palabras clave: NEUROCIENCIA , NEURIMAGENES , DECODING , NACHINE LEARNING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.949Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265079
URL: https://linkinghub.elsevier.com/retrieve/pii/S1053811924001216
DOI: http://dx.doi.org/10.1016/j.neuroimage.2024.120626
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(INFINA)
Articulos de INST.DE FISICA DEL PLASMA
Citación
Lützow Holm, Eric; Fernández Slezak, Diego; Tagliazucchi, Enzo Rodolfo; Contribution of low-level image statistics to EEG decoding of semantic content in multivariate and univariate models with feature optimization; Elsevier; Journal Neuroimag; 293; 6-2024; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES