Mostrar el registro sencillo del ítem

dc.contributor.author
Arganda, Ernesto  
dc.contributor.author
Epele, Manuel  
dc.contributor.author
Mileo, Nicolás Ismael  
dc.contributor.author
Morales, Roberto Anibal  
dc.date.available
2025-07-03T09:32:26Z  
dc.date.issued
2024-07  
dc.identifier.citation
Arganda, Ernesto; Epele, Manuel; Mileo, Nicolás Ismael; Morales, Roberto Anibal; Machine-learning performance on Higgs-pair production associated with dark matter at the LHC; Springer; The European Physical Journal Plus; 139; 7; 7-2024; 1-22  
dc.identifier.issn
2190-5444  
dc.identifier.uri
http://hdl.handle.net/11336/265071  
dc.description.abstract
Di-Higgs production at the LHC associated with missing transverse energy is explored in the context of simplified models that generically parameterize a large class of models with heavy scalars and dark matter candidates. Our aim is to figure out the improvement capability of machine-learning tools over traditional cut-based analyses. In particular, boosted decision trees and neural networks are implemented in order to determine the parameter space that can be tested at the LHC demanding four b-jets and large missing energy in the final state. We present a performance comparison between both machine-learning algorithms, based on the maximum significance reached, by feeding them with different sets of kinematic features corresponding to the LHC at a center-of-mass energy of 14 TeV. Both algorithms present very similar performances and substantially improve traditional analyses, being sensitive to most of the parameter space considered for a total integrated luminosity of 1 ab^−1, with significances at the evidence level, and even at the discovery level, depending on the masses of the new heavy scalars. A more conservative approach with systematic uncertainties on the background of 30% has also been contemplated, again providing very promising significances.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Machine-learning  
dc.subject
Dark Matter  
dc.subject
Supersymmetry  
dc.subject
Large Hadron Collider  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Machine-learning performance on Higgs-pair production associated with dark matter at the LHC  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-02T14:37:27Z  
dc.journal.volume
139  
dc.journal.number
7  
dc.journal.pagination
1-22  
dc.journal.pais
Italia  
dc.description.fil
Fil: Arganda, Ernesto. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Epele, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Mileo, Nicolás Ismael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Morales, Roberto Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.journal.title
The European Physical Journal Plus  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1140/epjp/s13360-024-05412-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjp/s13360-024-05412-8