Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Machine-learning performance on Higgs-pair production associated with dark matter at the LHC

Arganda, Ernesto; Epele, ManuelIcon ; Mileo, Nicolás IsmaelIcon ; Morales, Roberto AnibalIcon
Fecha de publicación: 07/2024
Editorial: Springer
Revista: The European Physical Journal Plus
ISSN: 2190-5444
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

Di-Higgs production at the LHC associated with missing transverse energy is explored in the context of simplified models that generically parameterize a large class of models with heavy scalars and dark matter candidates. Our aim is to figure out the improvement capability of machine-learning tools over traditional cut-based analyses. In particular, boosted decision trees and neural networks are implemented in order to determine the parameter space that can be tested at the LHC demanding four b-jets and large missing energy in the final state. We present a performance comparison between both machine-learning algorithms, based on the maximum significance reached, by feeding them with different sets of kinematic features corresponding to the LHC at a center-of-mass energy of 14 TeV. Both algorithms present very similar performances and substantially improve traditional analyses, being sensitive to most of the parameter space considered for a total integrated luminosity of 1 ab^−1, with significances at the evidence level, and even at the discovery level, depending on the masses of the new heavy scalars. A more conservative approach with systematic uncertainties on the background of 30% has also been contemplated, again providing very promising significances.
Palabras clave: Machine-learning , Dark Matter , Supersymmetry , Large Hadron Collider
Ver el registro completo
 
Archivos asociados
Tamaño: 1.309Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265071
URL: https://link.springer.com/10.1140/epjp/s13360-024-05412-8
DOI: http://dx.doi.org/10.1140/epjp/s13360-024-05412-8
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Arganda, Ernesto; Epele, Manuel; Mileo, Nicolás Ismael; Morales, Roberto Anibal; Machine-learning performance on Higgs-pair production associated with dark matter at the LHC; Springer; The European Physical Journal Plus; 139; 7; 7-2024; 1-22
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES