Mostrar el registro sencillo del ítem

dc.contributor.author
Landfried, Gustavo Andrés  
dc.contributor.author
Mocskos, Esteban Eduardo  
dc.date.available
2025-06-24T14:51:46Z  
dc.date.issued
2025-04  
dc.identifier.citation
Landfried, Gustavo Andrés; Mocskos, Esteban Eduardo; TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R; Journal Statistical Software; Journal Of Statistical Software; 112; 6; 4-2025; 1-41  
dc.identifier.issn
1548-7660  
dc.identifier.uri
http://hdl.handle.net/11336/264479  
dc.description.abstract
Knowing how individual abilities change is essential in a wide range of activities. The most widely used skill estimators in industry and academia (such as Elo and TrueSkill) propagate information in only one direction, from the past to the future, preventing them from obtaining reliable initial estimates and ensuring comparability between estimates distant in time and space. In contrast, the model TrueSkill Through Time (TTT) propagates all historical information throughout a single causal network, providing estimates with low uncertainty at any given time, enabling reliable initial skill estimates, and ensuring historical comparability. Although the TTT model was published more than a decade ago, it was not available until now in the programming languages with the largest communities. Here we offer the first software for Julia, Python, and R, accompanied by a detailed overview for the general public and an in-depth scientific explanation. After illustrating its basic mode of use, we show how to estimate the learning curves of historical players of the Association of Tennis Professionals. Analytical approximation methods and message-passing algorithms allow inference to be solved efficiently using any low-end computer, even in causal networks with millions of nodes and irregular structures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Journal Statistical Software  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Learning  
dc.subject
Skill  
dc.subject
Bayesian inference  
dc.subject
Gaming  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-06-19T11:09:19Z  
dc.journal.volume
112  
dc.journal.number
6  
dc.journal.pagination
1-41  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Landfried, Gustavo Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mocskos, Esteban Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.journal.title
Journal Of Statistical Software  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.18637/jss.v112.i06