Mostrar el registro sencillo del ítem
dc.contributor.author
Landfried, Gustavo Andrés

dc.contributor.author
Mocskos, Esteban Eduardo

dc.date.available
2025-06-24T14:51:46Z
dc.date.issued
2025-04
dc.identifier.citation
Landfried, Gustavo Andrés; Mocskos, Esteban Eduardo; TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R; Journal Statistical Software; Journal Of Statistical Software; 112; 6; 4-2025; 1-41
dc.identifier.issn
1548-7660
dc.identifier.uri
http://hdl.handle.net/11336/264479
dc.description.abstract
Knowing how individual abilities change is essential in a wide range of activities. The most widely used skill estimators in industry and academia (such as Elo and TrueSkill) propagate information in only one direction, from the past to the future, preventing them from obtaining reliable initial estimates and ensuring comparability between estimates distant in time and space. In contrast, the model TrueSkill Through Time (TTT) propagates all historical information throughout a single causal network, providing estimates with low uncertainty at any given time, enabling reliable initial skill estimates, and ensuring historical comparability. Although the TTT model was published more than a decade ago, it was not available until now in the programming languages with the largest communities. Here we offer the first software for Julia, Python, and R, accompanied by a detailed overview for the general public and an in-depth scientific explanation. After illustrating its basic mode of use, we show how to estimate the learning curves of historical players of the Association of Tennis Professionals. Analytical approximation methods and message-passing algorithms allow inference to be solved efficiently using any low-end computer, even in causal networks with millions of nodes and irregular structures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Journal Statistical Software

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Learning
dc.subject
Skill
dc.subject
Bayesian inference
dc.subject
Gaming
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-19T11:09:19Z
dc.journal.volume
112
dc.journal.number
6
dc.journal.pagination
1-41
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Landfried, Gustavo Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Mocskos, Esteban Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.journal.title
Journal Of Statistical Software

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.18637/jss.v112.i06
Archivos asociados