Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R

Landfried, Gustavo AndrésIcon ; Mocskos, Esteban EduardoIcon
Fecha de publicación: 04/2025
Editorial: Journal Statistical Software
Revista: Journal Of Statistical Software
ISSN: 1548-7660
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Knowing how individual abilities change is essential in a wide range of activities. The most widely used skill estimators in industry and academia (such as Elo and TrueSkill) propagate information in only one direction, from the past to the future, preventing them from obtaining reliable initial estimates and ensuring comparability between estimates distant in time and space. In contrast, the model TrueSkill Through Time (TTT) propagates all historical information throughout a single causal network, providing estimates with low uncertainty at any given time, enabling reliable initial skill estimates, and ensuring historical comparability. Although the TTT model was published more than a decade ago, it was not available until now in the programming languages with the largest communities. Here we offer the first software for Julia, Python, and R, accompanied by a detailed overview for the general public and an in-depth scientific explanation. After illustrating its basic mode of use, we show how to estimate the learning curves of historical players of the Association of Tennis Professionals. Analytical approximation methods and message-passing algorithms allow inference to be solved efficiently using any low-end computer, even in causal networks with millions of nodes and irregular structures.
Palabras clave: Learning , Skill , Bayesian inference , Gaming
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.101Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/264479
DOI: http://dx.doi.org/10.18637/jss.v112.i06
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Landfried, Gustavo Andrés; Mocskos, Esteban Eduardo; TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R; Journal Statistical Software; Journal Of Statistical Software; 112; 6; 4-2025; 1-41
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES