Artículo
Spectrally distinguishing symmetric spaces I
Fecha de publicación:
03/05/2025
Editorial:
Springer
Revista:
Mathematische Zeitschrift
ISSN:
0025-5874
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove that the irreducible symmetric space of complex structures on (resp. quaternionic structures on ) is spectrally unique within a 2-parameter (resp. 3-parameter) family of homogeneous metrics on the underlying differentiable manifold. Such families are strong candidates to contain all homogeneous metrics admitted on the corresponding manifolds. The main tool in the proof is an explicit expression for the smallest positive eigenvalue of the Laplace-Beltrami operator associated to each homogeneous metric involved. As a second consequence of this expression, we prove that any non-symmetric Einstein metric in the homogeneous families mentioned above is -unstable.
Palabras clave:
ISOSPECTRALITY
,
FIRST EIGENVALUE
,
HOMOGENEOUS METRIC
,
NU-STABILITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Lauret, Emilio Agustin; Rodríguez, Juan Sebastián; Spectrally distinguishing symmetric spaces I; Springer; Mathematische Zeitschrift; 310; 42; 3-5-2025; 1-26
Compartir
Altmétricas