Mostrar el registro sencillo del ítem

dc.contributor.author
Lauret, Emilio Agustin  
dc.contributor.author
Rodríguez, Juan Sebastián  
dc.date.available
2025-06-18T16:01:42Z  
dc.date.issued
2025-05-03  
dc.identifier.citation
Lauret, Emilio Agustin; Rodríguez, Juan Sebastián; Spectrally distinguishing symmetric spaces I; Springer; Mathematische Zeitschrift; 310; 42; 3-5-2025; 1-26  
dc.identifier.issn
0025-5874  
dc.identifier.uri
http://hdl.handle.net/11336/264223  
dc.description.abstract
We prove that the irreducible symmetric space of complex structures on (resp. quaternionic structures on ) is spectrally unique within a 2-parameter (resp. 3-parameter) family of homogeneous metrics on the underlying differentiable manifold. Such families are strong candidates to contain all homogeneous metrics admitted on the corresponding manifolds. The main tool in the proof is an explicit expression for the smallest positive eigenvalue of the Laplace-Beltrami operator associated to each homogeneous metric involved. As a second consequence of this expression, we prove that any non-symmetric Einstein metric in the homogeneous families mentioned above is -unstable.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ISOSPECTRALITY  
dc.subject
FIRST EIGENVALUE  
dc.subject
HOMOGENEOUS METRIC  
dc.subject
NU-STABILITY  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spectrally distinguishing symmetric spaces I  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-30T10:26:33Z  
dc.journal.volume
310  
dc.journal.number
42  
dc.journal.pagination
1-26  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Rodríguez, Juan Sebastián. Pontificia Universidad Javeriana; Colombia  
dc.journal.title
Mathematische Zeitschrift  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00209-025-03739-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00209-025-03739-1