Mostrar el registro sencillo del ítem

dc.contributor.author
Quiroga, Rodrigo  
dc.contributor.author
Villarreal, Marcos Ariel  
dc.date.available
2025-06-18T11:16:20Z  
dc.date.issued
2024-10  
dc.identifier.citation
Quiroga, Rodrigo; Villarreal, Marcos Ariel; Developing Generalizable Scoring Functions for Molecular Docking: Challenges and Perspectives; Bentham Science Publishers; Current Medicinal Chemistry; 32; 10-2024; 1-13  
dc.identifier.issn
0929-8673  
dc.identifier.uri
http://hdl.handle.net/11336/264184  
dc.description.abstract
Structure-based drug discovery methods, such as molecular docking and virtual screening, have become invaluable tools in developing novel drugs. At the core of these methods are Scoring Functions (SFs), which predict the binding affinity between ligands and protein targets. This study aims to review and contextualize the challenges and best practices in training novel scoring functions to improve their accuracy and generalizability in predicting protein-ligand binding affinities. Effective training of scoring functions requires careful attention to the quality of training data and methodologies. We emphasize the need for robust training strategies to produce consistent and generalizable SFs. Key considerations include addressing hidden biases and overfitting in machine-learning models, as well as ensuring the use of high-quality, unbiased datasets for both training and evaluation of SFs. Innovative hybrid methods, combining the advantages of empirical and machine-learning approaches, hold promise for outperforming current scoring functions while displaying greater generalizability and versatility.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Bentham Science Publishers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Scoring Functions  
dc.subject
Machine learning  
dc.subject
Virtual Screening  
dc.subject
Computational Drug Discovery  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Farmacología y Farmacia  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Developing Generalizable Scoring Functions for Molecular Docking: Challenges and Perspectives  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-06-17T10:39:53Z  
dc.identifier.eissn
1875-533X  
dc.journal.volume
32  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Oak Park  
dc.description.fil
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina  
dc.description.fil
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina  
dc.journal.title
Current Medicinal Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.eurekaselect.com/235892/article  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2174/0109298673334469241017053508