Mostrar el registro sencillo del ítem
dc.contributor.author
Quiroga, Rodrigo

dc.contributor.author
Villarreal, Marcos Ariel

dc.date.available
2025-06-18T11:16:20Z
dc.date.issued
2024-10
dc.identifier.citation
Quiroga, Rodrigo; Villarreal, Marcos Ariel; Developing Generalizable Scoring Functions for Molecular Docking: Challenges and Perspectives; Bentham Science Publishers; Current Medicinal Chemistry; 32; 10-2024; 1-13
dc.identifier.issn
0929-8673
dc.identifier.uri
http://hdl.handle.net/11336/264184
dc.description.abstract
Structure-based drug discovery methods, such as molecular docking and virtual screening, have become invaluable tools in developing novel drugs. At the core of these methods are Scoring Functions (SFs), which predict the binding affinity between ligands and protein targets. This study aims to review and contextualize the challenges and best practices in training novel scoring functions to improve their accuracy and generalizability in predicting protein-ligand binding affinities. Effective training of scoring functions requires careful attention to the quality of training data and methodologies. We emphasize the need for robust training strategies to produce consistent and generalizable SFs. Key considerations include addressing hidden biases and overfitting in machine-learning models, as well as ensuring the use of high-quality, unbiased datasets for both training and evaluation of SFs. Innovative hybrid methods, combining the advantages of empirical and machine-learning approaches, hold promise for outperforming current scoring functions while displaying greater generalizability and versatility.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Bentham Science Publishers

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Scoring Functions
dc.subject
Machine learning
dc.subject
Virtual Screening
dc.subject
Computational Drug Discovery
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.subject.classification
Farmacología y Farmacia

dc.subject.classification
Medicina Básica

dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD

dc.title
Developing Generalizable Scoring Functions for Molecular Docking: Challenges and Perspectives
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-17T10:39:53Z
dc.identifier.eissn
1875-533X
dc.journal.volume
32
dc.journal.pagination
1-13
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Oak Park
dc.description.fil
Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina
dc.description.fil
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina
dc.journal.title
Current Medicinal Chemistry

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.eurekaselect.com/235892/article
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2174/0109298673334469241017053508
Archivos asociados