Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Developing Generalizable Scoring Functions for Molecular Docking: Challenges and Perspectives

Quiroga, RodrigoIcon ; Villarreal, Marcos ArielIcon
Fecha de publicación: 10/2024
Editorial: Bentham Science Publishers
Revista: Current Medicinal Chemistry
ISSN: 0929-8673
e-ISSN: 1875-533X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática; Farmacología y Farmacia

Resumen

Structure-based drug discovery methods, such as molecular docking and virtual screening, have become invaluable tools in developing novel drugs. At the core of these methods are Scoring Functions (SFs), which predict the binding affinity between ligands and protein targets. This study aims to review and contextualize the challenges and best practices in training novel scoring functions to improve their accuracy and generalizability in predicting protein-ligand binding affinities. Effective training of scoring functions requires careful attention to the quality of training data and methodologies. We emphasize the need for robust training strategies to produce consistent and generalizable SFs. Key considerations include addressing hidden biases and overfitting in machine-learning models, as well as ensuring the use of high-quality, unbiased datasets for both training and evaluation of SFs. Innovative hybrid methods, combining the advantages of empirical and machine-learning approaches, hold promise for outperforming current scoring functions while displaying greater generalizability and versatility.
Palabras clave: Scoring Functions , Machine learning , Virtual Screening , Computational Drug Discovery
Ver el registro completo
 
Archivos asociados
Tamaño: 2.589Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/264184
URL: https://www.eurekaselect.com/235892/article
DOI: http://dx.doi.org/10.2174/0109298673334469241017053508
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Quiroga, Rodrigo; Villarreal, Marcos Ariel; Developing Generalizable Scoring Functions for Molecular Docking: Challenges and Perspectives; Bentham Science Publishers; Current Medicinal Chemistry; 32; 10-2024; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES