Mostrar el registro sencillo del ítem
dc.contributor.author
Casado, Ulises Martín

dc.contributor.author
Altuna, Facundo Ignacio

dc.contributor.author
Miccio, Luis Alejandro

dc.date.available
2025-06-18T10:25:30Z
dc.date.issued
2024-12
dc.identifier.citation
Casado, Ulises Martín; Altuna, Facundo Ignacio; Miccio, Luis Alejandro; Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models; MDPI; Sustainability; 16; 23; 12-2024; 1-15
dc.identifier.issn
2071-1050
dc.identifier.uri
http://hdl.handle.net/11336/264165
dc.description.abstract
In this study, we employed machine learning techniques to improve sustainable materials design by examining how various latent space representations affect the AI performance in property predictions. We compared three fingerprinting methodologies: (a) neural networks trained on specific properties, (b) encoder–decoder architectures, and c) traditional Morgan fingerprints. Their encoding quality was quantitatively compared by using these fingerprints as inputs for a simple regression model (Random Forest) to predict glass transition temperatures (Tg), a critical parameter in determining material performance. We found that the task-specific neural networks achieved the highest accuracy, with a mean absolute percentage error (MAPE) of 10% and an R2 of 0.9, significantly outperforming encoder–decoder models (MAPE: 19%, R2: 0.76) and Morgan fingerprints (MAPE: 24%, R2: 0.6). In addition, we used dimensionality reduction techniques, such as principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE), to gain insights on the models’ abilities to learn relevant molecular features to Tg. By offering a more profound understanding of how chemical structures influence AI-based property predictions, this approach enables the efficient identification of high-performing materials in applications that range from water decontamination to polymer recyclability with minimum experimental effort, promoting a circular economy in materials science.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
AI-assisted design
dc.subject
glass formers
dc.subject
latent space
dc.subject
data scarcity conditions
dc.subject
sustainable materials design
dc.subject.classification
Ingeniería de los Materiales

dc.subject.classification
Ingeniería de los Materiales

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-17T10:39:41Z
dc.journal.volume
16
dc.journal.number
23
dc.journal.pagination
1-15
dc.journal.pais
Suiza

dc.description.fil
Fil: Casado, Ulises Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
dc.description.fil
Fil: Altuna, Facundo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
dc.description.fil
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad del País Vasco; España
dc.journal.title
Sustainability
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2071-1050/16/23/10681
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/su162310681
Archivos asociados