Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models

Casado, Ulises MartínIcon ; Altuna, Facundo IgnacioIcon ; Miccio, Luis AlejandroIcon
Fecha de publicación: 12/2024
Editorial: MDPI
Revista: Sustainability
ISSN: 2071-1050
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

In this study, we employed machine learning techniques to improve sustainable materials design by examining how various latent space representations affect the AI performance in property predictions. We compared three fingerprinting methodologies: (a) neural networks trained on specific properties, (b) encoder–decoder architectures, and c) traditional Morgan fingerprints. Their encoding quality was quantitatively compared by using these fingerprints as inputs for a simple regression model (Random Forest) to predict glass transition temperatures (Tg), a critical parameter in determining material performance. We found that the task-specific neural networks achieved the highest accuracy, with a mean absolute percentage error (MAPE) of 10% and an R2 of 0.9, significantly outperforming encoder–decoder models (MAPE: 19%, R2: 0.76) and Morgan fingerprints (MAPE: 24%, R2: 0.6). In addition, we used dimensionality reduction techniques, such as principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE), to gain insights on the models’ abilities to learn relevant molecular features to Tg. By offering a more profound understanding of how chemical structures influence AI-based property predictions, this approach enables the efficient identification of high-performing materials in applications that range from water decontamination to polymer recyclability with minimum experimental effort, promoting a circular economy in materials science.
Palabras clave: AI-assisted design , glass formers , latent space , data scarcity conditions , sustainable materials design
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.182Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/264165
URL: https://www.mdpi.com/2071-1050/16/23/10681
DOI: http://dx.doi.org/10.3390/su162310681
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Casado, Ulises Martín; Altuna, Facundo Ignacio; Miccio, Luis Alejandro; Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models; MDPI; Sustainability; 16; 23; 12-2024; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES