Mostrar el registro sencillo del ítem
dc.contributor.author
Cavasotto, Claudio Norberto

dc.contributor.author
Di Filippo, Juan Ignacio

dc.contributor.author
Scardino, Valeria
dc.date.available
2025-06-18T10:01:58Z
dc.date.issued
2024-05
dc.identifier.citation
Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; Scardino, Valeria; Lessons learnt from machine learning in early stages of drug discovery; Taylor & Francis; Expert Opinion On Drug Discovery; 19; 6; 5-2024; 631-633
dc.identifier.issn
1746-0441
dc.identifier.uri
http://hdl.handle.net/11336/264157
dc.description.abstract
With the promise of a big leap, the field of Drug Discovery (DD) seems to have been permeated by Machine Learning (ML); it is not unreasonable to think that for every single ‘classical’ computational method within DD, there exists an ML-based counterpart; namely, for docking, Molecular Dynamics (MD), protein modeling, etc. Furthermore, the amount of money being invested for ML in DD is growing steadily. Evidently, ML methods have come to stay, and, in our opinion, they will be a valuable aid in accelerating the drug discovery pipeline...
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MACHINE LEARNING
dc.subject
DRUG DISCOVERY
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject.classification
Otras Ciencias Químicas

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Lessons learnt from machine learning in early stages of drug discovery
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-10T13:34:41Z
dc.identifier.eissn
1746-045X
dc.journal.volume
19
dc.journal.number
6
dc.journal.pagination
631-633
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
dc.description.fil
Fil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
dc.description.fil
Fil: Scardino, Valeria. Universidad Austral; Argentina
dc.journal.title
Expert Opinion On Drug Discovery

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/17460441.2024.2354279
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17460441.2024.2354279
Archivos asociados