Artículo
Lessons learnt from machine learning in early stages of drug discovery
Fecha de publicación:
05/2024
Editorial:
Taylor & Francis
Revista:
Expert Opinion On Drug Discovery
ISSN:
1746-0441
e-ISSN:
1746-045X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
With the promise of a big leap, the field of Drug Discovery (DD) seems to have been permeated by Machine Learning (ML); it is not unreasonable to think that for every single ‘classical’ computational method within DD, there exists an ML-based counterpart; namely, for docking, Molecular Dynamics (MD), protein modeling, etc. Furthermore, the amount of money being invested for ML in DD is growing steadily. Evidently, ML methods have come to stay, and, in our opinion, they will be a valuable aid in accelerating the drug discovery pipeline...
Palabras clave:
MACHINE LEARNING
,
DRUG DISCOVERY
,
ARTIFICIAL INTELLIGENCE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIMT)
Articulos de INSTITUTO DE INVESTIGACIONES EN MEDICINA TRASLACIONAL
Articulos de INSTITUTO DE INVESTIGACIONES EN MEDICINA TRASLACIONAL
Citación
Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; Scardino, Valeria; Lessons learnt from machine learning in early stages of drug discovery; Taylor & Francis; Expert Opinion On Drug Discovery; 19; 6; 5-2024; 631-633
Compartir
Altmétricas