Mostrar el registro sencillo del ítem
dc.contributor.author
Hongn, Andrea

dc.contributor.author
Bosch, Facundo
dc.contributor.author
Prado, Lara Eleonora
dc.contributor.author
Ferrández, José Manuel
dc.contributor.author
Bonomini, Maria Paula

dc.date.available
2025-06-03T09:46:18Z
dc.date.issued
2025-03
dc.identifier.citation
Hongn, Andrea; Bosch, Facundo; Prado, Lara Eleonora; Ferrández, José Manuel; Bonomini, Maria Paula; Wearable physiological signals under acute stress and exercise conditions; Springer; Scientific Data; 12; 1; 3-2025; 1-10
dc.identifier.issn
2052-4463
dc.identifier.uri
http://hdl.handle.net/11336/263256
dc.description.abstract
In this work, a novel dataset containing physiological signals recorded non invasevely during structured acute stress induction, as well as aerobic and anaerobic exercise sessions is presented. The physiological data were collected using the Empatica E4, a wearable device that measures electrodermal activity, skin temperature, three-axis accelerometry and blood volume pulse, from which heart rate and heart rate variability features can be derived. A stress induction protocol was designed using mathematical and emotional tasks to elicit physiological responses. For aerobic and anaerobic exercise, a stationary bike routine was developed to distinguish between the two types of activity. The dataset includes records from 36 healthy individuals during the stress protocol, 30 during aerobic exercise, and 31 during anaerobic exercise. Several machine learning algorithms were applied to validate the dataset, with XGBoost achieving an accuracy of 93% in classifying stress versus rest, 91% in distinguishing between aerobic and anaerobic exercise, and 84% in a four-label classification task involving stress, rest, aerobic, and anaerobic activities. The dataset is publicly available for further research.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
STRESS
dc.subject
WEARABLE
dc.subject
EXERCISE
dc.subject
ANAEROBIC
dc.subject
AEROBIC
dc.subject.classification
Otras Ingeniería Médica

dc.subject.classification
Ingeniería Médica

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Wearable physiological signals under acute stress and exercise conditions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-02T10:45:35Z
dc.journal.volume
12
dc.journal.number
1
dc.journal.pagination
1-10
dc.journal.pais
Reino Unido

dc.description.fil
Fil: Hongn, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
dc.description.fil
Fil: Bosch, Facundo. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Prado, Lara Eleonora. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Ferrández, José Manuel. Universidad Politécnica de Cartagena; España
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Tecnológico de Buenos Aires; Argentina
dc.journal.title
Scientific Data
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41597-025-04845-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41597-025-04845-9
Archivos asociados