Mostrar el registro sencillo del ítem

dc.contributor.author
Hongn, Andrea  
dc.contributor.author
Bosch, Facundo  
dc.contributor.author
Prado, Lara Eleonora  
dc.contributor.author
Ferrández, José Manuel  
dc.contributor.author
Bonomini, Maria Paula  
dc.date.available
2025-06-03T09:46:18Z  
dc.date.issued
2025-03  
dc.identifier.citation
Hongn, Andrea; Bosch, Facundo; Prado, Lara Eleonora; Ferrández, José Manuel; Bonomini, Maria Paula; Wearable physiological signals under acute stress and exercise conditions; Springer; Scientific Data; 12; 1; 3-2025; 1-10  
dc.identifier.issn
2052-4463  
dc.identifier.uri
http://hdl.handle.net/11336/263256  
dc.description.abstract
In this work, a novel dataset containing physiological signals recorded non invasevely during structured acute stress induction, as well as aerobic and anaerobic exercise sessions is presented. The physiological data were collected using the Empatica E4, a wearable device that measures electrodermal activity, skin temperature, three-axis accelerometry and blood volume pulse, from which heart rate and heart rate variability features can be derived. A stress induction protocol was designed using mathematical and emotional tasks to elicit physiological responses. For aerobic and anaerobic exercise, a stationary bike routine was developed to distinguish between the two types of activity. The dataset includes records from 36 healthy individuals during the stress protocol, 30 during aerobic exercise, and 31 during anaerobic exercise. Several machine learning algorithms were applied to validate the dataset, with XGBoost achieving an accuracy of 93% in classifying stress versus rest, 91% in distinguishing between aerobic and anaerobic exercise, and 84% in a four-label classification task involving stress, rest, aerobic, and anaerobic activities. The dataset is publicly available for further research.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
STRESS  
dc.subject
WEARABLE  
dc.subject
EXERCISE  
dc.subject
ANAEROBIC  
dc.subject
AEROBIC  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Wearable physiological signals under acute stress and exercise conditions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-06-02T10:45:35Z  
dc.journal.volume
12  
dc.journal.number
1  
dc.journal.pagination
1-10  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Hongn, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina  
dc.description.fil
Fil: Bosch, Facundo. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Prado, Lara Eleonora. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Ferrández, José Manuel. Universidad Politécnica de Cartagena; España  
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Tecnológico de Buenos Aires; Argentina  
dc.journal.title
Scientific Data  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41597-025-04845-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41597-025-04845-9