Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Wearable physiological signals under acute stress and exercise conditions

Hongn, AndreaIcon ; Bosch, Facundo; Prado, Lara Eleonora; Ferrández, José Manuel; Bonomini, Maria PaulaIcon
Fecha de publicación: 03/2025
Editorial: Springer
Revista: Scientific Data
ISSN: 2052-4463
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Médica

Resumen

In this work, a novel dataset containing physiological signals recorded non invasevely during structured acute stress induction, as well as aerobic and anaerobic exercise sessions is presented. The physiological data were collected using the Empatica E4, a wearable device that measures electrodermal activity, skin temperature, three-axis accelerometry and blood volume pulse, from which heart rate and heart rate variability features can be derived. A stress induction protocol was designed using mathematical and emotional tasks to elicit physiological responses. For aerobic and anaerobic exercise, a stationary bike routine was developed to distinguish between the two types of activity. The dataset includes records from 36 healthy individuals during the stress protocol, 30 during aerobic exercise, and 31 during anaerobic exercise. Several machine learning algorithms were applied to validate the dataset, with XGBoost achieving an accuracy of 93% in classifying stress versus rest, 91% in distinguishing between aerobic and anaerobic exercise, and 84% in a four-label classification task involving stress, rest, aerobic, and anaerobic activities. The dataset is publicly available for further research.
Palabras clave: STRESS , WEARABLE , EXERCISE , ANAEROBIC , AEROBIC
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.418Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/263256
URL: https://www.nature.com/articles/s41597-025-04845-9
DOI: http://dx.doi.org/10.1038/s41597-025-04845-9
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Hongn, Andrea; Bosch, Facundo; Prado, Lara Eleonora; Ferrández, José Manuel; Bonomini, Maria Paula; Wearable physiological signals under acute stress and exercise conditions; Springer; Scientific Data; 12; 1; 3-2025; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES