Mostrar el registro sencillo del ítem
dc.contributor.author
Tarasi, Facundo
dc.contributor.author
Todorov, Tchavdar N.
dc.contributor.author
Bustamante, Carlos Mauricio
dc.contributor.author
Gadea, Esteban David
dc.contributor.author
Stella, Lorenzo
dc.contributor.author
Apostolova, Tzveta
dc.contributor.author
Scherlis Perel, Damian Ariel
dc.date.available
2025-05-30T13:58:53Z
dc.date.issued
2024-12
dc.identifier.citation
Tarasi, Facundo; Todorov, Tchavdar N.; Bustamante, Carlos Mauricio; Gadea, Esteban David; Stella, Lorenzo; et al.; Interplay between classical and quantum dissipation in light–matter dynamics; American Institute of Physics; Journal of Chemical Physics; 161; 21; 12-2024; 1-14
dc.identifier.issn
0021-9606
dc.identifier.uri
http://hdl.handle.net/11336/263061
dc.description.abstract
A quantum-electrodynamics approach is presented to describe the dynamics of electrons that exchange energy with both photon and phonon baths. Our ansatz is a dissipative quantum Liouville equation, cast in the Redfield form, with two driving terms associated with radiative and vibrational relaxation mechanisms, respectively. Remarkably, within the radiative contribution, there is a term that exactly replicates the expression derived from a semiclassical treatment where the power dissipated by the electronic density is treated as the emission from a classical dipole [Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)]. Analysis of the distinct contributions to the total radiation shows that the semiclassical emission depends on the coherences, with the remainder of the quantum-electrodynamics driving term determined by the excited populations, thus accounting for the relaxation of eigenstates or incoherent mixed states. This approach is used to investigate the response of the Su–Schrieffer–Heeger model for trans-polyacetylene to both pulsed and continuous laser irradiation. Upon excitation with a short pulse and in the absence of the vibrational mechanism, the conducting band population exhibits a stepwise relaxation, characterized by cycles of exponential decay followed by a transient subradiant state. The latter arises from the collective coupling between Bloch states featuring a quasi-continuum energy spectrum in reciprocal space. The separate examination of the semiclassical dynamics reveals that it is this contribution that is responsible for the collective behavior. If vibrational dissipation is active, following the laser pulse, the excited electrons rapidly populate the minimum of the conduction band, and the emission spectrum shifts to lower frequencies with respect to absorption. Meanwhile, continuous irradiation drives the system to a stationary state with a broad emission spectrum.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Electrodynamics
dc.subject
excited state
dc.subject
tight-binding
dc.subject
spontaneous emission
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Interplay between classical and quantum dissipation in light–matter dynamics
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-30T13:26:13Z
dc.journal.volume
161
dc.journal.number
21
dc.journal.pagination
1-14
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Tarasi, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Todorov, Tchavdar N.. The Queens University of Belfast; Irlanda
dc.description.fil
Fil: Bustamante, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Gadea, Esteban David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Stella, Lorenzo. The Queens University of Belfast; Irlanda
dc.description.fil
Fil: Apostolova, Tzveta. The Queens University of Belfast; Irlanda
dc.description.fil
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.journal.title
Journal of Chemical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/161/21/214107/3323344/Interplay-between-classical-and-quantum
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0240135
Archivos asociados