Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Interplay between classical and quantum dissipation in light–matter dynamics

Tarasi, FacundoIcon ; Todorov, Tchavdar N.; Bustamante, Carlos MauricioIcon ; Gadea, Esteban DavidIcon ; Stella, Lorenzo; Apostolova, Tzveta; Scherlis Perel, Damian ArielIcon
Fecha de publicación: 12/2024
Editorial: American Institute of Physics
Revista: Journal of Chemical Physics
ISSN: 0021-9606
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

A quantum-electrodynamics approach is presented to describe the dynamics of electrons that exchange energy with both photon and phonon baths. Our ansatz is a dissipative quantum Liouville equation, cast in the Redfield form, with two driving terms associated with radiative and vibrational relaxation mechanisms, respectively. Remarkably, within the radiative contribution, there is a term that exactly replicates the expression derived from a semiclassical treatment where the power dissipated by the electronic density is treated as the emission from a classical dipole [Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)]. Analysis of the distinct contributions to the total radiation shows that the semiclassical emission depends on the coherences, with the remainder of the quantum-electrodynamics driving term determined by the excited populations, thus accounting for the relaxation of eigenstates or incoherent mixed states. This approach is used to investigate the response of the Su–Schrieffer–Heeger model for trans-polyacetylene to both pulsed and continuous laser irradiation. Upon excitation with a short pulse and in the absence of the vibrational mechanism, the conducting band population exhibits a stepwise relaxation, characterized by cycles of exponential decay followed by a transient subradiant state. The latter arises from the collective coupling between Bloch states featuring a quasi-continuum energy spectrum in reciprocal space. The separate examination of the semiclassical dynamics reveals that it is this contribution that is responsible for the collective behavior. If vibrational dissipation is active, following the laser pulse, the excited electrons rapidly populate the minimum of the conduction band, and the emission spectrum shifts to lower frequencies with respect to absorption. Meanwhile, continuous irradiation drives the system to a stationary state with a broad emission spectrum.
Palabras clave: Electrodynamics , excited state , tight-binding , spontaneous emission
Ver el registro completo
 
Archivos asociados
Tamaño: 1.234Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/263061
URL: https://pubs.aip.org/jcp/article/161/21/214107/3323344/Interplay-between-classic
DOI: http://dx.doi.org/10.1063/5.0240135
Colecciones
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Tarasi, Facundo; Todorov, Tchavdar N.; Bustamante, Carlos Mauricio; Gadea, Esteban David; Stella, Lorenzo; et al.; Interplay between classical and quantum dissipation in light–matter dynamics; American Institute of Physics; Journal of Chemical Physics; 161; 21; 12-2024; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES