Mostrar el registro sencillo del ítem

dc.contributor.author
Garí Núñez, Yisel  
dc.contributor.author
Pacini Naumovich, Elina Rocío  
dc.contributor.author
Robino, Luciano Ivan  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Monge Bosdari, David Antonio  
dc.date.available
2025-05-28T10:13:57Z  
dc.date.issued
2024-08  
dc.identifier.citation
Garí Núñez, Yisel; Pacini Naumovich, Elina Rocío; Robino, Luciano Ivan; Mateos Diaz, Cristian Maximiliano; Monge Bosdari, David Antonio; Online RL-based cloud autoscaling for scientific workflows: Evaluation of Q-Learning and SARSA; Elsevier Science; Future Generation Computer Systems; 157; 8-2024; 573-586  
dc.identifier.issn
0167-739X  
dc.identifier.uri
http://hdl.handle.net/11336/262736  
dc.description.abstract
Q-Learning and SARSA are two well-known reinforcement learning (RL) algorithms that have shown promising results in several application domains. However, their approach to build solutions is quite different. For example, SARSA tends to be more conservative than Q-Learning while exploring the solution space. Motivated by such differences, in this paper, we conducted an evaluation of both algorithms in the context of online workflow autoscaling in pay-per-use Clouds, where the goal is to learn optimal virtual machine scaling policies to optimize metrics such as execution time and monetary costs. To do so, we based our experiments on a state-of-the-art scaling strategy with encouraging results in learning optimal scaling policies for reducing execution time and monetary cost. We conducted experiments on simulated environments with four widespread benchmark workflows and two types of virtual machines. Results show that SARSA outperforms Q-Learning in almost all cases. For two workflows SARSA obtains significant gains of up to 40.8% in the first 100 and 300 episodes respectively and losses less than 6% in all episodes observed. In one workflow SARSA achieves significant gains up to 13.9% and no significant losses were observed. There was only one workflow with no significant gains and one significant loss (16.2%) in 1 of 50 observations. In summary, we found multiple stages where SARSA achieves significant and remarkable gains, and the rest of the time both algorithms had a similar performance. In general terms, we can observe that SARSA performs better for learning scaling policies in the Cloud considering workflow applications commonly used by the community to benchmark Cloud workflow resource allocation techniques. These represent interesting results to further drive the design and selection of RL-based autoscaling strategies to schedule workflow executions in the Cloud.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLOUD COMPUTING  
dc.subject
AUTOSCALING  
dc.subject
WORKFLOW  
dc.subject
REINFORCEMENT LEARNING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Online RL-based cloud autoscaling for scientific workflows: Evaluation of Q-Learning and SARSA  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-20T11:23:13Z  
dc.journal.volume
157  
dc.journal.pagination
573-586  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Garí Núñez, Yisel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Robino, Luciano Ivan. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Monge Bosdari, David Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina  
dc.journal.title
Future Generation Computer Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167739X24001432  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.future.2024.04.014