Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Online RL-based cloud autoscaling for scientific workflows: Evaluation of Q-Learning and SARSA

Garí Núñez, YiselIcon ; Pacini Naumovich, Elina RocíoIcon ; Robino, Luciano IvanIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Monge Bosdari, David AntonioIcon
Fecha de publicación: 08/2024
Editorial: Elsevier Science
Revista: Future Generation Computer Systems
ISSN: 0167-739X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Q-Learning and SARSA are two well-known reinforcement learning (RL) algorithms that have shown promising results in several application domains. However, their approach to build solutions is quite different. For example, SARSA tends to be more conservative than Q-Learning while exploring the solution space. Motivated by such differences, in this paper, we conducted an evaluation of both algorithms in the context of online workflow autoscaling in pay-per-use Clouds, where the goal is to learn optimal virtual machine scaling policies to optimize metrics such as execution time and monetary costs. To do so, we based our experiments on a state-of-the-art scaling strategy with encouraging results in learning optimal scaling policies for reducing execution time and monetary cost. We conducted experiments on simulated environments with four widespread benchmark workflows and two types of virtual machines. Results show that SARSA outperforms Q-Learning in almost all cases. For two workflows SARSA obtains significant gains of up to 40.8% in the first 100 and 300 episodes respectively and losses less than 6% in all episodes observed. In one workflow SARSA achieves significant gains up to 13.9% and no significant losses were observed. There was only one workflow with no significant gains and one significant loss (16.2%) in 1 of 50 observations. In summary, we found multiple stages where SARSA achieves significant and remarkable gains, and the rest of the time both algorithms had a similar performance. In general terms, we can observe that SARSA performs better for learning scaling policies in the Cloud considering workflow applications commonly used by the community to benchmark Cloud workflow resource allocation techniques. These represent interesting results to further drive the design and selection of RL-based autoscaling strategies to schedule workflow executions in the Cloud.
Palabras clave: CLOUD COMPUTING , AUTOSCALING , WORKFLOW , REINFORCEMENT LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 2.687Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/262736
URL: https://linkinghub.elsevier.com/retrieve/pii/S0167739X24001432
DOI: http://dx.doi.org/10.1016/j.future.2024.04.014
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Garí Núñez, Yisel; Pacini Naumovich, Elina Rocío; Robino, Luciano Ivan; Mateos Diaz, Cristian Maximiliano; Monge Bosdari, David Antonio; Online RL-based cloud autoscaling for scientific workflows: Evaluation of Q-Learning and SARSA; Elsevier Science; Future Generation Computer Systems; 157; 8-2024; 573-586
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES