Mostrar el registro sencillo del ítem

dc.contributor.author
Saavedra, Marcos David  
dc.contributor.author
Inthamoussou, Fernando Ariel  
dc.contributor.author
Garelli, Fabricio  
dc.date.available
2025-05-22T11:49:24Z  
dc.date.issued
2024-11  
dc.identifier.citation
Saavedra, Marcos David; Inthamoussou, Fernando Ariel; Garelli, Fabricio; Model-free dynamic estimation of fore-aft and side-to-side wind turbine tower deflections; American Institute of Physics; Journal of Renewable and Sustainable Energy; 16; 6; 11-2024; 1-13  
dc.identifier.issn
1941-7012  
dc.identifier.uri
http://hdl.handle.net/11336/262290  
dc.description.abstract
This paper presents a novel approach for estimating the fore-aft and side-to-side displacements in wind turbines. The proposed methodologyexploits the capability of Recurrent Neural Networks (RNNs) to capture complex temporal relationships, making them suitable for modelingthe dynamic behavior of the deflections. Unlike traditional analytical estimators, the proposed solution learns the system dynamics directlyfrom operational data, eliminating the necessity for high-fidelity mathematical modeling. In contrast to previous data-driven methods, thisapproach not only considers the dynamics in the data through recurrent structures, but also provides instantaneous deflections estimates,which is critical for real-time load monitoring and control applications. This real-time capability, combined with the dynamic nature of theRNN structure, advances the field by addressing both accuracy and temporal responsiveness in estimation. Based on a meticulous analysis ofthe available signals, a minimum common set of input variables present in the wind turbine control loop is determined by carrying out a correlationanalysis using Spearman’s coefficients and a frequency domain analysis in each of the system’s operating regions. Additionally, Hurstexponents are used to evaluate the persistence of the target variable, providing insights into the conditions under which a RNN estimator outperformsa static neural network estimator. The data used in this study has been generated from the certified simulator FAST (Fatigue,Aerodynamics, Structures, and Turbulence). The results are contrasted with the ones obtained using a technique recently published andexperimentally validated. They demonstrate the effectiveness of the estimators in reconstructing the oscillations throughout the wind turbine’soperating range using only a few input signals.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Wind turbine  
dc.subject
Tower deflections  
dc.subject
Estimation  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Model-free dynamic estimation of fore-aft and side-to-side wind turbine tower deflections  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-22T09:28:34Z  
dc.journal.volume
16  
dc.journal.number
6  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Saavedra, Marcos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.description.fil
Fil: Inthamoussou, Fernando Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.description.fil
Fil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.journal.title
Journal of Renewable and Sustainable Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jrse/article/16/6/063308/3325441/Model-free-dynamic-estimation-of-fore-aft-and-side  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0216741