Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Model-free dynamic estimation of fore-aft and side-to-side wind turbine tower deflections

Saavedra, Marcos DavidIcon ; Inthamoussou, Fernando ArielIcon ; Garelli, FabricioIcon
Fecha de publicación: 11/2024
Editorial: American Institute of Physics
Revista: Journal of Renewable and Sustainable Energy
ISSN: 1941-7012
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

This paper presents a novel approach for estimating the fore-aft and side-to-side displacements in wind turbines. The proposed methodologyexploits the capability of Recurrent Neural Networks (RNNs) to capture complex temporal relationships, making them suitable for modelingthe dynamic behavior of the deflections. Unlike traditional analytical estimators, the proposed solution learns the system dynamics directlyfrom operational data, eliminating the necessity for high-fidelity mathematical modeling. In contrast to previous data-driven methods, thisapproach not only considers the dynamics in the data through recurrent structures, but also provides instantaneous deflections estimates,which is critical for real-time load monitoring and control applications. This real-time capability, combined with the dynamic nature of theRNN structure, advances the field by addressing both accuracy and temporal responsiveness in estimation. Based on a meticulous analysis ofthe available signals, a minimum common set of input variables present in the wind turbine control loop is determined by carrying out a correlationanalysis using Spearman’s coefficients and a frequency domain analysis in each of the system’s operating regions. Additionally, Hurstexponents are used to evaluate the persistence of the target variable, providing insights into the conditions under which a RNN estimator outperformsa static neural network estimator. The data used in this study has been generated from the certified simulator FAST (Fatigue,Aerodynamics, Structures, and Turbulence). The results are contrasted with the ones obtained using a technique recently published andexperimentally validated. They demonstrate the effectiveness of the estimators in reconstructing the oscillations throughout the wind turbine’soperating range using only a few input signals.
Palabras clave: Wind turbine , Tower deflections , Estimation
Ver el registro completo
 
Archivos asociados
Tamaño: 3.113Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/262290
URL: https://pubs.aip.org/jrse/article/16/6/063308/3325441/Model-free-dynamic-estimat
DOI: http://dx.doi.org/10.1063/5.0216741
Colecciones
Articulos(LEICI)
Articulos de INSTITUTO DE INVESTIGACIONES EN ELECTRONICA, CONTROL Y PROCESAMIENTO DE SEÑALES
Citación
Saavedra, Marcos David; Inthamoussou, Fernando Ariel; Garelli, Fabricio; Model-free dynamic estimation of fore-aft and side-to-side wind turbine tower deflections; American Institute of Physics; Journal of Renewable and Sustainable Energy; 16; 6; 11-2024; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES