Artículo
Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination
Pérez Rodríguez, Michael
; Dirchwolf, Pamela Maia
; Varão Silva, Tiago; Lima Vieira, Alan; Anchieta Gomes Neto, José; Pellerano, Roberto Gerardo
; Ferreira, Edilene Cristina



Fecha de publicación:
06/2020
Editorial:
Elsevier
Revista:
Food Chemistry
ISSN:
0308-8146
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A simple, fast, and efficient spark discharge-laser-induced breakdown spectroscopy (SD-LIBS) method was developed for determining rice botanic origin using predictive modeling based on support vector machine (SVM).Seventy-two samples from four rice varieties (Guri, Irga 424, Puitá, and Taim) were analyzed by SD-LIBS.Spectral lines of C, Ca, Fe, Mg, N and Na were selected as input variables for prediction model fitting. The SVMalgorithm parameters were optimized using a central composite design (CCD) to find the better classificationperformance. The optimum model for discriminating rice samples according to their botanical variety was obtained using C = 5.25 and γ = 0.119. This model achieved 96.4% of correct predictions in test samples andshowed sensitivities and specificities per class within the range of 92?100%. The developed method is robust andeco-friendly for rice botanic identification since its prediction results are consistent and reproducible and itsapplication does not generate chemical waste.
Palabras clave:
rice
,
botanical origin
,
SD-LIBS
,
Support vector machine
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIBA-NEA)
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Pérez Rodríguez, Michael; Dirchwolf, Pamela Maia; Varão Silva, Tiago; Lima Vieira, Alan; Anchieta Gomes Neto, José; et al.; Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination; Elsevier; Food Chemistry; 331; 6-2020; 1-5
Compartir
Altmétricas