Mostrar el registro sencillo del ítem

dc.contributor.author
White, Brian S.  
dc.contributor.author
de Reyniès, Aurélien  
dc.contributor.author
Newman, Aaron M.  
dc.contributor.author
Waterfall, Joshua J.  
dc.contributor.author
Lamb, Andrew  
dc.contributor.author
Petitprez, Florent  
dc.contributor.author
Lin, Yating  
dc.contributor.author
Yu, Rongshan  
dc.contributor.author
Guerrero Gimenez, Martin Eduardo  
dc.contributor.author
Domanskyi, Sergii  
dc.contributor.author
Monaco, Gianni  
dc.contributor.author
Chung, Verena  
dc.contributor.author
Banerjee, Jineta  
dc.contributor.author
Derrick, Daniel  
dc.contributor.author
Valdeolivas, Alberto  
dc.contributor.author
Li, Haojun  
dc.contributor.author
Xiao, Xu  
dc.contributor.author
Wang, Shun  
dc.contributor.author
Zheng, Frank  
dc.contributor.author
Yang, Wenxian  
dc.contributor.author
Catania, Carlos Adrian  
dc.contributor.author
Lang, Benjamin J.  
dc.contributor.author
Bertus, Thomas J.  
dc.contributor.author
Piermarocchi, Carlo  
dc.contributor.author
Caruso, Francesca P.  
dc.contributor.author
Scholz, Alexander  
dc.contributor.author
Saez Rodriguez, Julio  
dc.contributor.author
Heiser, Laura M.  
dc.contributor.author
Guinney, Justin  
dc.contributor.author
Gentles, Andrew J.  
dc.date.available
2025-05-12T17:19:50Z  
dc.date.issued
2024-08  
dc.identifier.citation
White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; et al.; Community assessment of methods to deconvolve cellular composition from bulk gene expression; Springer Nature; Nature Communications; 15; 1; 8-2024; 1-22  
dc.identifier.issn
2041-1723  
dc.identifier.uri
http://hdl.handle.net/11336/261172  
dc.description.abstract
We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Support Vector Regression  
dc.subject
Random Forests  
dc.subject
Tumor Deconvolution  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Biología Celular, Microbiología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Community assessment of methods to deconvolve cellular composition from bulk gene expression  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-29T10:24:40Z  
dc.journal.volume
15  
dc.journal.number
1  
dc.journal.pagination
1-22  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: White, Brian S.. The Jackson Laboratory for Genomic Medicine; Estados Unidos  
dc.description.fil
Fil: de Reyniès, Aurélien. Inserm; Francia. Universite de Paris; Francia  
dc.description.fil
Fil: Newman, Aaron M.. University of Stanford; Estados Unidos  
dc.description.fil
Fil: Waterfall, Joshua J.. Inserm; Francia. PSL Research University; Francia  
dc.description.fil
Fil: Lamb, Andrew. Sage Bionetworks; Estados Unidos  
dc.description.fil
Fil: Petitprez, Florent. University of Edinburgh; Reino Unido. Ligue Nationale Contre le Cancer; Francia  
dc.description.fil
Fil: Lin, Yating. Xiamen University; China  
dc.description.fil
Fil: Yu, Rongshan. Xiamen University; China  
dc.description.fil
Fil: Guerrero Gimenez, Martin Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina  
dc.description.fil
Fil: Domanskyi, Sergii. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Monaco, Gianni. BIOGEM Institute of Molecular Biology and Genetics; Italia  
dc.description.fil
Fil: Chung, Verena. Sage Bionetworks; Estados Unidos  
dc.description.fil
Fil: Banerjee, Jineta. Sage Bionetworks; Estados Unidos  
dc.description.fil
Fil: Derrick, Daniel. Oregon Health & Science University; Estados Unidos  
dc.description.fil
Fil: Valdeolivas, Alberto. Ruprecht Karls Universitat Heidelberg; Alemania  
dc.description.fil
Fil: Li, Haojun. Xiamen University; China  
dc.description.fil
Fil: Xiao, Xu. Xiamen University; China  
dc.description.fil
Fil: Wang, Shun. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Zheng, Frank. AmoyDx; China  
dc.description.fil
Fil: Yang, Wenxian. Aginome Scientific; China  
dc.description.fil
Fil: Catania, Carlos Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina  
dc.description.fil
Fil: Lang, Benjamin J.. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Bertus, Thomas J.. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Piermarocchi, Carlo. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Caruso, Francesca P.. BIOGEM Institute of Molecular Biology and Genetic; Italia  
dc.description.fil
Fil: Scholz, Alexander. No especifíca;  
dc.description.fil
Fil: Saez Rodriguez, Julio. Heidelberg University; Alemania  
dc.description.fil
Fil: Heiser, Laura M.. Oregon Health & Science University; Estados Unidos  
dc.description.fil
Fil: Guinney, Justin. Sage Bionetworks; Estados Unidos  
dc.description.fil
Fil: Gentles, Andrew J.. University of Stanford; Estados Unidos  
dc.journal.title
Nature Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-50618-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41467-024-50618-0