Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Community assessment of methods to deconvolve cellular composition from bulk gene expression

White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; Petitprez, Florent; Lin, Yating; Yu, Rongshan; Guerrero Gimenez, Martin EduardoIcon ; Domanskyi, Sergii; Monaco, Gianni; Chung, Verena; Banerjee, Jineta; Derrick, Daniel; Valdeolivas, Alberto; Li, Haojun; Xiao, Xu; Wang, Shun; Zheng, Frank; Yang, Wenxian; Catania, Carlos AdrianIcon ; Lang, Benjamin J.; Bertus, Thomas J.; Piermarocchi, Carlo; Caruso, Francesca P.; Scholz, Alexander; Saez Rodriguez, Julio; Heiser, Laura M.; Guinney, Justin; Gentles, Andrew J.
Fecha de publicación: 08/2024
Editorial: Springer Nature
Revista: Nature Communications
ISSN: 2041-1723
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información; Biología Celular, Microbiología

Resumen

We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.
Palabras clave: Support Vector Regression , Random Forests , Tumor Deconvolution
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.287Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/261172
URL: https://www.nature.com/articles/s41467-024-50618-0
DOI: http://dx.doi.org/10.1038/s41467-024-50618-0
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; et al.; Community assessment of methods to deconvolve cellular composition from bulk gene expression; Springer Nature; Nature Communications; 15; 1; 8-2024; 1-22
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES