Artículo
Community assessment of methods to deconvolve cellular composition from bulk gene expression
White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; Petitprez, Florent; Lin, Yating; Yu, Rongshan; Guerrero Gimenez, Martin Eduardo
; Domanskyi, Sergii; Monaco, Gianni; Chung, Verena; Banerjee, Jineta; Derrick, Daniel; Valdeolivas, Alberto; Li, Haojun; Xiao, Xu; Wang, Shun; Zheng, Frank; Yang, Wenxian; Catania, Carlos Adrian
; Lang, Benjamin J.; Bertus, Thomas J.; Piermarocchi, Carlo; Caruso, Francesca P.; Scholz, Alexander; Saez Rodriguez, Julio; Heiser, Laura M.; Guinney, Justin; Gentles, Andrew J.


Fecha de publicación:
08/2024
Editorial:
Springer Nature
Revista:
Nature Communications
ISSN:
2041-1723
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.
Palabras clave:
Support Vector Regression
,
Random Forests
,
Tumor Deconvolution
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; et al.; Community assessment of methods to deconvolve cellular composition from bulk gene expression; Springer Nature; Nature Communications; 15; 1; 8-2024; 1-22
Compartir
Altmétricas