Mostrar el registro sencillo del ítem
dc.contributor.author
Saavedra, Lucas A.
dc.contributor.author
Mosqueira, Alejo
dc.contributor.author
Barrantes, Francisco Jose

dc.date.available
2025-05-12T12:58:46Z
dc.date.issued
2024-07
dc.identifier.citation
Saavedra, Lucas A.; Mosqueira, Alejo; Barrantes, Francisco Jose; A supervised graph-based deep learning algorithm to detect and quantify clustered particles; Royal Society of Chemistry; Nanoscale; 16; 32; 7-2024; 15308-15318
dc.identifier.issn
2040-3364
dc.identifier.uri
http://hdl.handle.net/11336/261091
dc.description.abstract
Considerable efforts are currently being devoted to characterizing the topography of membrane-embedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Royal Society of Chemistry

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Deep Learning
dc.subject
Modelling
dc.subject
protein nanocluster analysis
dc.subject
nicotinic acetylcholine receptor
dc.subject.classification
Biofísica

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A supervised graph-based deep learning algorithm to detect and quantify clustered particles
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-12T10:35:04Z
dc.identifier.eissn
2040-3372
dc.journal.volume
16
dc.journal.number
32
dc.journal.pagination
15308-15318
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Saavedra, Lucas A.. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
dc.description.fil
Fil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
dc.description.fil
Fil: Barrantes, Francisco Jose. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina
dc.journal.title
Nanoscale
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4NR01944J
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/D4NR01944J
Archivos asociados