Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A supervised graph-based deep learning algorithm to detect and quantify clustered particles

Saavedra, Lucas A.; Mosqueira, Alejo; Barrantes, Francisco JoseIcon
Fecha de publicación: 07/2024
Editorial: Royal Society of Chemistry
Revista: Nanoscale
ISSN: 2040-3364
e-ISSN: 2040-3372
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biofísica

Resumen

Considerable efforts are currently being devoted to characterizing the topography of membrane-embedded proteins using combinations of biophysical and numerical analytical approaches. In this work, we present an end-to-end (i.e., human intervention-independent) algorithm consisting of two concatenated binary Graph Neural Network (GNNs) classifiers with the aim of detecting and quantifying dynamic clustering of particles. As the algorithm only needs simulated data to train the GNNs, it is parameter-independent. The GNN-based algorithm is first tested on datasets based on simulated, albeit biologically realistic data, and validated on actual fluorescence microscopy experimental data. Application of the new GNN method is shown to be faster than other currently used approaches for high-dimensional SMLM datasets, with the additional advantage that it can be implemented on standard desktop computers. Furthermore, GNN models obtained via training procedures are reusable. To the best of our knowledge, this is the first application of GNN-based approaches to the analysis of particle aggregation, with potential applications to the study of nanoscopic particles like the nanoclusters of membrane-associated proteins in live cells.
Palabras clave: Deep Learning , Modelling , protein nanocluster analysis , nicotinic acetylcholine receptor
Ver el registro completo
 
Archivos asociados
Tamaño: 2.386Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/261091
URL: https://xlink.rsc.org/?DOI=D4NR01944J
DOI: http://dx.doi.org/10.1039/D4NR01944J
Colecciones
Articulos(BIOMED)
Articulos de INSTITUTO DE INVESTIGACIONES BIOMEDICAS
Citación
Saavedra, Lucas A.; Mosqueira, Alejo; Barrantes, Francisco Jose; A supervised graph-based deep learning algorithm to detect and quantify clustered particles; Royal Society of Chemistry; Nanoscale; 16; 32; 7-2024; 15308-15318
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES