Mostrar el registro sencillo del ítem

dc.contributor.author
Mockert, Fabian  
dc.contributor.author
Grams, Christian M.  
dc.contributor.author
Lerch, Sebastian  
dc.contributor.author
Osman, Marisol  
dc.contributor.author
Quinting, Julian  
dc.date.available
2025-05-12T11:28:21Z  
dc.date.issued
2024-09  
dc.identifier.citation
Mockert, Fabian; Grams, Christian M.; Lerch, Sebastian; Osman, Marisol; Quinting, Julian; Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 150; 765; 9-2024; 4771-4787  
dc.identifier.issn
0035-9009  
dc.identifier.uri
http://hdl.handle.net/11336/261012  
dc.description.abstract
Reliable forecasts of quasi-stationary, recurrent, and persistent large-scale atmospheric circulation patterns—so-called weather regimes—are crucial for various socio-economic sectors, including energy, health, and agriculture. Despite steady progress, probabilistic weather regime predictions still exhibit biases in the exact timing and amplitude of weather regimes. This study thus aims at advancing probabilistic weather regime predictions in the North Atlantic–European region through ensemble post-processing. Here, we focus on the representation of seven year-round weather regimes in sub-seasonal to seasonal reforecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). The manifestation of each of the seven regimes can be expressed by a continuous weather regime index, representing the projection of the instantaneous 500-hPa geopotential height anomalies (Z500A) onto the respective mean regime pattern. We apply a two-step ensemble post-processing involving first univariate ensemble model output statistics and second ensemble copula coupling, which restores the multivariate dependence structure. Compared with current forecast calibration practices, which rely on correcting the Z500 field by the lead-time-dependent mean bias, our approach extends the forecast skill horizon for daily/instantaneous regime forecasts moderately by 1 day (from 13.5 to 14.5 days). Additionally, to our knowledge our study is the first to evaluate the multivariate aspects of forecast quality systematically for weather regime forecasts. Our method outperforms current practices in the multivariate aspect, as measured by the energy and variogram score. Still, our study shows that, even with advanced post-processing, weather regime prediction becomes difficult beyond 14 days, which likely points towards intrinsic limits of predictability for daily/instantaneous regime forecasts. The proposed method can easily be applied to operational weather regime forecasts, offering a neat alternative for cost- and time-efficient post-processing of real-time weather regime forecasts.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
ENSEMBLE COPULA COUPLING  
dc.subject
ENSEMBLE MODEL OUTPUT STATISTICS  
dc.subject
FORECASTING  
dc.subject
WEATHER REGIMES  
dc.subject
POST-PROCESSING  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-09T15:58:12Z  
dc.journal.volume
150  
dc.journal.number
765  
dc.journal.pagination
4771-4787  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Mockert, Fabian. Karlsruher Institut für Technologie; Alemania  
dc.description.fil
Fil: Grams, Christian M.. Karlsruher Institut für Technologie; Alemania  
dc.description.fil
Fil: Lerch, Sebastian. Karlsruher Institut für Technologie; Alemania. Heidelberg Institute for Theoretical Studies; Alemania  
dc.description.fil
Fil: Osman, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Karlsruher Institut für Technologie; Alemania  
dc.description.fil
Fil: Quinting, Julian. Karlsruher Institut für Technologie; Alemania  
dc.journal.title
Quarterly Journal of the Royal Meteorological Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4840  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.4840