Mostrar el registro sencillo del ítem
dc.contributor.author
Mockert, Fabian
dc.contributor.author
Grams, Christian M.
dc.contributor.author
Lerch, Sebastian
dc.contributor.author
Osman, Marisol
dc.contributor.author
Quinting, Julian
dc.date.available
2025-05-12T11:28:21Z
dc.date.issued
2024-09
dc.identifier.citation
Mockert, Fabian; Grams, Christian M.; Lerch, Sebastian; Osman, Marisol; Quinting, Julian; Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 150; 765; 9-2024; 4771-4787
dc.identifier.issn
0035-9009
dc.identifier.uri
http://hdl.handle.net/11336/261012
dc.description.abstract
Reliable forecasts of quasi-stationary, recurrent, and persistent large-scale atmospheric circulation patterns—so-called weather regimes—are crucial for various socio-economic sectors, including energy, health, and agriculture. Despite steady progress, probabilistic weather regime predictions still exhibit biases in the exact timing and amplitude of weather regimes. This study thus aims at advancing probabilistic weather regime predictions in the North Atlantic–European region through ensemble post-processing. Here, we focus on the representation of seven year-round weather regimes in sub-seasonal to seasonal reforecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). The manifestation of each of the seven regimes can be expressed by a continuous weather regime index, representing the projection of the instantaneous 500-hPa geopotential height anomalies (Z500A) onto the respective mean regime pattern. We apply a two-step ensemble post-processing involving first univariate ensemble model output statistics and second ensemble copula coupling, which restores the multivariate dependence structure. Compared with current forecast calibration practices, which rely on correcting the Z500 field by the lead-time-dependent mean bias, our approach extends the forecast skill horizon for daily/instantaneous regime forecasts moderately by 1 day (from 13.5 to 14.5 days). Additionally, to our knowledge our study is the first to evaluate the multivariate aspects of forecast quality systematically for weather regime forecasts. Our method outperforms current practices in the multivariate aspect, as measured by the energy and variogram score. Still, our study shows that, even with advanced post-processing, weather regime prediction becomes difficult beyond 14 days, which likely points towards intrinsic limits of predictability for daily/instantaneous regime forecasts. The proposed method can easily be applied to operational weather regime forecasts, offering a neat alternative for cost- and time-efficient post-processing of real-time weather regime forecasts.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
ENSEMBLE COPULA COUPLING
dc.subject
ENSEMBLE MODEL OUTPUT STATISTICS
dc.subject
FORECASTING
dc.subject
WEATHER REGIMES
dc.subject
POST-PROCESSING
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-09T15:58:12Z
dc.journal.volume
150
dc.journal.number
765
dc.journal.pagination
4771-4787
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Mockert, Fabian. Karlsruher Institut für Technologie; Alemania
dc.description.fil
Fil: Grams, Christian M.. Karlsruher Institut für Technologie; Alemania
dc.description.fil
Fil: Lerch, Sebastian. Karlsruher Institut für Technologie; Alemania. Heidelberg Institute for Theoretical Studies; Alemania
dc.description.fil
Fil: Osman, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Karlsruher Institut für Technologie; Alemania
dc.description.fil
Fil: Quinting, Julian. Karlsruher Institut für Technologie; Alemania
dc.journal.title
Quarterly Journal of the Royal Meteorological Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4840
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.4840
Archivos asociados