Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts

Mockert, Fabian; Grams, Christian M.; Lerch, Sebastian; Osman, MarisolIcon ; Quinting, Julian
Fecha de publicación: 09/2024
Editorial: John Wiley & Sons Ltd
Revista: Quarterly Journal of the Royal Meteorological Society
ISSN: 0035-9009
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Reliable forecasts of quasi-stationary, recurrent, and persistent large-scale atmospheric circulation patterns—so-called weather regimes—are crucial for various socio-economic sectors, including energy, health, and agriculture. Despite steady progress, probabilistic weather regime predictions still exhibit biases in the exact timing and amplitude of weather regimes. This study thus aims at advancing probabilistic weather regime predictions in the North Atlantic–European region through ensemble post-processing. Here, we focus on the representation of seven year-round weather regimes in sub-seasonal to seasonal reforecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). The manifestation of each of the seven regimes can be expressed by a continuous weather regime index, representing the projection of the instantaneous 500-hPa geopotential height anomalies (Z500A) onto the respective mean regime pattern. We apply a two-step ensemble post-processing involving first univariate ensemble model output statistics and second ensemble copula coupling, which restores the multivariate dependence structure. Compared with current forecast calibration practices, which rely on correcting the Z500 field by the lead-time-dependent mean bias, our approach extends the forecast skill horizon for daily/instantaneous regime forecasts moderately by 1 day (from 13.5 to 14.5 days). Additionally, to our knowledge our study is the first to evaluate the multivariate aspects of forecast quality systematically for weather regime forecasts. Our method outperforms current practices in the multivariate aspect, as measured by the energy and variogram score. Still, our study shows that, even with advanced post-processing, weather regime prediction becomes difficult beyond 14 days, which likely points towards intrinsic limits of predictability for daily/instantaneous regime forecasts. The proposed method can easily be applied to operational weather regime forecasts, offering a neat alternative for cost- and time-efficient post-processing of real-time weather regime forecasts.
Palabras clave: ENSEMBLE COPULA COUPLING , ENSEMBLE MODEL OUTPUT STATISTICS , FORECASTING , WEATHER REGIMES , POST-PROCESSING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.209Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/261012
URL: https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4840
DOI: http://dx.doi.org/10.1002/qj.4840
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Citación
Mockert, Fabian; Grams, Christian M.; Lerch, Sebastian; Osman, Marisol; Quinting, Julian; Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 150; 765; 9-2024; 4771-4787
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES