Mostrar el registro sencillo del ítem

dc.contributor.author
Dato, Jonathan Fabián  
dc.contributor.author
Dinápoli, Matías Gabriel  
dc.contributor.author
D'onofrio, Enrique Eduardo  
dc.contributor.author
Simionato, Claudia Gloria  
dc.date.available
2025-05-12T09:58:51Z  
dc.date.issued
2024-04  
dc.identifier.citation
Dato, Jonathan Fabián; Dinápoli, Matías Gabriel; D'onofrio, Enrique Eduardo; Simionato, Claudia Gloria; On water level forecasting using artificial neural networks: the case of the Río de la Plata Estuary, Argentina; Springer; Natural Hazards; 120; 11; 4-2024; 9753-9776  
dc.identifier.issn
0921-030X  
dc.identifier.uri
http://hdl.handle.net/11336/260988  
dc.description.abstract
The Río de la Plata Estuary (RdP) is frequently affected by large storm surges that have historically caused social and economic losses. According to recent research, the number and strength of surge events have been increasing over time as a result of climate change. Although process-based models have been widely used for the storm surge prediction, their high computational demand may be a significant disadvantage in some applications, such as rapid or neartime forecasting. Artificial neural network (ANN) becomes an alternative tool to forecast the water level, taking into account meteorological and astronomical forcing as numerical models also do. In this work, an ANN model performance was evaluated to hindcast and forecast water levels in the RdP. Several combinations of lead times and inputs were assessed in order to find the best configuration. The resulting model provides 4-day forecasts for Buenos Aires and Torre Oyarvide stations (located at the upper and intermediate estuary, respectively), using observed water levels, meteorological inputs and predicted astronomical tides. Results also support the ANN model’s ability to simulate even extreme events. For instance, for a 12 h-forecast, the RMSE is about 20 cm. Finally, we conclude that the model developed here can effectively complement the empirical and numerical forecasts executed by Naval Hydrographic Service, reducing computational costs and leveraging available datasets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Storm surge  
dc.subject
Forecasting  
dc.subject
Artificial neural networks  
dc.subject
Rio de la Plata Estuary  
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On water level forecasting using artificial neural networks: the case of the Río de la Plata Estuary, Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-09T16:17:29Z  
dc.journal.volume
120  
dc.journal.number
11  
dc.journal.pagination
9753-9776  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Dato, Jonathan Fabián. Departamento de Agrimensura (departamento de Agrimensura) ; Facultad de Ingenieria ; Universidad de Buenos Aires;  
dc.description.fil
Fil: Dinápoli, Matías Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina  
dc.description.fil
Fil: D'onofrio, Enrique Eduardo. Departamento de Agrimensura (departamento de Agrimensura) ; Facultad de Ingenieria ; Universidad de Buenos Aires;  
dc.description.fil
Fil: Simionato, Claudia Gloria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.journal.title
Natural Hazards  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11069-024-06585-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11069-024-06585-2