Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On water level forecasting using artificial neural networks: the case of the Río de la Plata Estuary, Argentina

Dato, Jonathan Fabián; Dinápoli, Matías Gabriel; D'onofrio, Enrique Eduardo; Simionato, Claudia GloriaIcon
Fecha de publicación: 04/2024
Editorial: Springer
Revista: Natural Hazards
ISSN: 0921-030X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

The Río de la Plata Estuary (RdP) is frequently affected by large storm surges that have historically caused social and economic losses. According to recent research, the number and strength of surge events have been increasing over time as a result of climate change. Although process-based models have been widely used for the storm surge prediction, their high computational demand may be a significant disadvantage in some applications, such as rapid or neartime forecasting. Artificial neural network (ANN) becomes an alternative tool to forecast the water level, taking into account meteorological and astronomical forcing as numerical models also do. In this work, an ANN model performance was evaluated to hindcast and forecast water levels in the RdP. Several combinations of lead times and inputs were assessed in order to find the best configuration. The resulting model provides 4-day forecasts for Buenos Aires and Torre Oyarvide stations (located at the upper and intermediate estuary, respectively), using observed water levels, meteorological inputs and predicted astronomical tides. Results also support the ANN model’s ability to simulate even extreme events. For instance, for a 12 h-forecast, the RMSE is about 20 cm. Finally, we conclude that the model developed here can effectively complement the empirical and numerical forecasts executed by Naval Hydrographic Service, reducing computational costs and leveraging available datasets.
Palabras clave: Storm surge , Forecasting , Artificial neural networks , Rio de la Plata Estuary
Ver el registro completo
 
Archivos asociados
Tamaño: 1.704Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/260988
URL: https://link.springer.com/10.1007/s11069-024-06585-2
DOI: http://dx.doi.org/10.1007/s11069-024-06585-2
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Citación
Dato, Jonathan Fabián; Dinápoli, Matías Gabriel; D'onofrio, Enrique Eduardo; Simionato, Claudia Gloria; On water level forecasting using artificial neural networks: the case of the Río de la Plata Estuary, Argentina; Springer; Natural Hazards; 120; 11; 4-2024; 9753-9776
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES