Mostrar el registro sencillo del ítem
dc.contributor.author
Rodriguez Nuñez, Martin
dc.contributor.author
Tavera Busso, Iván
dc.contributor.author
Carreras, Hebe Alejandra
dc.date.available
2025-05-09T09:56:30Z
dc.date.issued
2024-01
dc.identifier.citation
Rodriguez Nuñez, Martin; Tavera Busso, Iván; Carreras, Hebe Alejandra; Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques; Elsevier; Heliyon; 10; 2; 1-2024; 1-12
dc.identifier.issn
2405-8440
dc.identifier.uri
http://hdl.handle.net/11336/260833
dc.description.abstract
Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
PM2.5
dc.subject
CYCLIST
dc.subject
MACHINE LEARNING
dc.subject
EXPOSURE MODELS
dc.subject
URBAN ENVIRONMENTS
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-09T09:17:44Z
dc.journal.volume
10
dc.journal.number
2
dc.journal.pagination
1-12
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Rodriguez Nuñez, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
dc.description.fil
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
dc.description.fil
Fil: Carreras, Hebe Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
dc.journal.title
Heliyon
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2405844024007552
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.heliyon.2024.e24724
Archivos asociados