Mostrar el registro sencillo del ítem

dc.contributor.author
Rodriguez Nuñez, Martin  
dc.contributor.author
Tavera Busso, Iván  
dc.contributor.author
Carreras, Hebe Alejandra  
dc.date.available
2025-05-09T09:56:30Z  
dc.date.issued
2024-01  
dc.identifier.citation
Rodriguez Nuñez, Martin; Tavera Busso, Iván; Carreras, Hebe Alejandra; Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques; Elsevier; Heliyon; 10; 2; 1-2024; 1-12  
dc.identifier.issn
2405-8440  
dc.identifier.uri
http://hdl.handle.net/11336/260833  
dc.description.abstract
Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
PM2.5  
dc.subject
CYCLIST  
dc.subject
MACHINE LEARNING  
dc.subject
EXPOSURE MODELS  
dc.subject
URBAN ENVIRONMENTS  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-09T09:17:44Z  
dc.journal.volume
10  
dc.journal.number
2  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Rodriguez Nuñez, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina  
dc.description.fil
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina  
dc.description.fil
Fil: Carreras, Hebe Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina  
dc.journal.title
Heliyon  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2405844024007552  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.heliyon.2024.e24724