Mostrar el registro sencillo del ítem

dc.contributor.author
Yannibelli, Virginia Daniela  
dc.contributor.author
Hirsch Jofré, Matías Eberardo  
dc.contributor.author
Toloza, Juan Manuel  
dc.contributor.author
Majchrzak, Tim A.  
dc.contributor.author
Grønli, Tor Morten  
dc.contributor.author
Zunino Suarez, Alejandro Octavio  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.date.available
2025-05-07T10:05:19Z  
dc.date.issued
2024-09  
dc.identifier.citation
Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Grønli, Tor Morten; et al.; BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge; Institute of Electrical and Electronics Engineers; IEEE Access; 12; 9-2024; 145893-145919  
dc.identifier.issn
2169-3536  
dc.identifier.uri
http://hdl.handle.net/11336/260493  
dc.description.abstract
Due to the increasing interest in employing smartphones as first-class citizens in high-performance Edge computing environments, the necessity of software to facilitate the evaluation of load-balancing strategies for smartphone-based clusters has emerged. Regarding this, to select the best strategy for a cluster with m smartphones, usually a number of g candidate strategies are evaluated based on a number of r scenarios that contain these smartphones, which differ in terms of the start battery levels required for these smartphones. Thus, each of the r scenarios must be prepared before evaluating each of the g strategies on each ri , so that the smartphones have the required start battery levels pre-configured for ri , which requires discharging or charging smartphones. This leads to a number of e = r*g scenario preparation events that must be sequentially developed, considering that the time required to develop each event depends on the previous event. Thus, the single-objective problem addressed here implies finding out the sequential order in which the events should be developed, so that the total time required to develop them is minimized. This problem is modeled as the ATSP (Asymmetric Traveling Salesman Problem), since defining the sequential order to develop the events is equivalent to defining the sequential order to visit the cities, and therefore, is an NP-Hard problem. Given the complexity of this problem, the novel software module BAGESS (Battery Aware Green Edge Scenario Sequencer) is proposed, which uses a genetic algorithm for defining the sequential order to develop the events. BAGESS’s performance outperforms those of the methods currently used for the problem, reaching significant savings regarding the time required to develop the events in the range [12, 85]%.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
EDGE COMPUTING  
dc.subject
SMARTPHONE  
dc.subject
PROFILING  
dc.subject
BENCHMARKING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-29T10:31:54Z  
dc.journal.volume
12  
dc.journal.pagination
145893-145919  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Toloza, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Majchrzak, Tim A.. University Of Agder; Noruega  
dc.description.fil
Fil: Grønli, Tor Morten. Kristiania University College; Noruega  
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
IEEE Access  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10697165/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2024.3469641