Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge

Yannibelli, Virginia DanielaIcon ; Hirsch Jofré, Matías EberardoIcon ; Toloza, Juan ManuelIcon ; Majchrzak, Tim A.; Grønli, Tor Morten; Zunino Suarez, Alejandro OctavioIcon ; Mateos Diaz, Cristian MaximilianoIcon
Fecha de publicación: 09/2024
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Access
ISSN: 2169-3536
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Due to the increasing interest in employing smartphones as first-class citizens in high-performance Edge computing environments, the necessity of software to facilitate the evaluation of load-balancing strategies for smartphone-based clusters has emerged. Regarding this, to select the best strategy for a cluster with m smartphones, usually a number of g candidate strategies are evaluated based on a number of r scenarios that contain these smartphones, which differ in terms of the start battery levels required for these smartphones. Thus, each of the r scenarios must be prepared before evaluating each of the g strategies on each ri , so that the smartphones have the required start battery levels pre-configured for ri , which requires discharging or charging smartphones. This leads to a number of e = r*g scenario preparation events that must be sequentially developed, considering that the time required to develop each event depends on the previous event. Thus, the single-objective problem addressed here implies finding out the sequential order in which the events should be developed, so that the total time required to develop them is minimized. This problem is modeled as the ATSP (Asymmetric Traveling Salesman Problem), since defining the sequential order to develop the events is equivalent to defining the sequential order to visit the cities, and therefore, is an NP-Hard problem. Given the complexity of this problem, the novel software module BAGESS (Battery Aware Green Edge Scenario Sequencer) is proposed, which uses a genetic algorithm for defining the sequential order to develop the events. BAGESS’s performance outperforms those of the methods currently used for the problem, reaching significant savings regarding the time required to develop the events in the range [12, 85]%.
Palabras clave: EDGE COMPUTING , SMARTPHONE , PROFILING , BENCHMARKING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 535.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/260493
URL: https://ieeexplore.ieee.org/document/10697165/
DOI: http://dx.doi.org/10.1109/ACCESS.2024.3469641
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Grønli, Tor Morten; et al.; BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge; Institute of Electrical and Electronics Engineers; IEEE Access; 12; 9-2024; 145893-145919
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES